Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvrab Structured version   Visualization version   GIF version

Theorem elsetpreimafvrab 47388
Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvrab ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)

Proof of Theorem elsetpreimafvrab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvbi 47385 . . 3 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋))))
3 fveqeq2 6890 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑦) = (𝐹𝑋)))
43elrab 3676 . . 3 (𝑦 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)))
52, 4bitr4di 289 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆𝑦 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)}))
65eqrdv 2734 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  {crab 3420  {csn 4606  ccnv 5658  cima 5662   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  elsetpreimafveq  47391
  Copyright terms: Public domain W3C validator