Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvrab Structured version   Visualization version   GIF version

Theorem elsetpreimafvrab 47327
Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvrab ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)

Proof of Theorem elsetpreimafvrab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvbi 47324 . . 3 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋))))
3 fveqeq2 6896 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑦) = (𝐹𝑋)))
43elrab 3676 . . 3 (𝑦 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)} ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)))
52, 4bitr4di 289 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆𝑦 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)}))
65eqrdv 2732 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → 𝑆 = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐹𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  {crab 3420  {csn 4608  ccnv 5666  cima 5670   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  elsetpreimafveq  47330
  Copyright terms: Public domain W3C validator