| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetpreimafvrab | Structured version Visualization version GIF version | ||
| Description: An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| elsetpreimafvrab | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | elsetpreimafvbi 47324 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)))) |
| 3 | fveqeq2 6896 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑦) = (𝐹‘𝑋))) | |
| 4 | 3 | elrab 3676 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)} ↔ (𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋))) |
| 5 | 2, 4 | bitr4di 289 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)})) |
| 6 | 5 | eqrdv 2732 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 {crab 3420 {csn 4608 ◡ccnv 5666 “ cima 5670 Fn wfn 6537 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 |
| This theorem is referenced by: elsetpreimafveq 47330 |
| Copyright terms: Public domain | W3C validator |