Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaelsetpreimafv Structured version   Visualization version   GIF version

Theorem imaelsetpreimafv 43630
Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
imaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝑋(𝑧)

Proof of Theorem imaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21fvelsetpreimafv 43622 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 fveq2 6663 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
43sneqd 4572 . . . . . . 7 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
54imaeq2d 5922 . . . . . 6 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
65eqeq2d 2831 . . . . 5 (𝑦 = 𝑥 → (𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑆 = (𝐹 “ {(𝐹𝑥)})))
76cbvrexvw 3447 . . . 4 (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
82, 7sylibr 236 . . 3 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
983adant3 1127 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
10 imaeq2 5918 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
11103ad2ant3 1130 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
12 fnfun 6446 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
13 funimacnv 6428 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
1412, 13syl 17 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
15143ad2ant1 1128 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
16153ad2ant1 1128 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
171elsetpreimafvbi 43626 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋))))
18 fnfvelrn 6841 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
1918snssd 4735 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑦𝐴) → {(𝐹𝑦)} ⊆ ran 𝐹)
20 df-ss 3945 . . . . . . . . . . . 12 ({(𝐹𝑦)} ⊆ ran 𝐹 ↔ ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
2119, 20sylib 220 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
22213adant3 1127 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
23 simp3 1133 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → (𝐹𝑦) = (𝐹𝑋))
2423sneqd 4572 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → {(𝐹𝑦)} = {(𝐹𝑋)})
2522, 24eqtrd 2855 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
26253expib 1117 . . . . . . . 8 (𝐹 Fn 𝐴 → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
27263ad2ant1 1128 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2817, 27sylbid 242 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2928imp 409 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
30293adant3 1127 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
3111, 16, 303eqtrd 2859 . . 3 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = {(𝐹𝑋)})
3231rexlimdv3a 3285 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = {(𝐹𝑋)}))
339, 32mpd 15 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  {cab 2798  wrex 3138  cin 3928  wss 3929  {csn 4560  ccnv 5547  ran crn 5549  cima 5551  Fun wfun 6342   Fn wfn 6343  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356
This theorem is referenced by:  uniimaelsetpreimafv  43631
  Copyright terms: Public domain W3C validator