Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaelsetpreimafv Structured version   Visualization version   GIF version

Theorem imaelsetpreimafv 44847
Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
imaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝑋(𝑧)

Proof of Theorem imaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21fvelsetpreimafv 44839 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 fveq2 6774 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
43sneqd 4573 . . . . . . 7 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
54imaeq2d 5969 . . . . . 6 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
65eqeq2d 2749 . . . . 5 (𝑦 = 𝑥 → (𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑆 = (𝐹 “ {(𝐹𝑥)})))
76cbvrexvw 3384 . . . 4 (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
82, 7sylibr 233 . . 3 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
983adant3 1131 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
10 imaeq2 5965 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
11103ad2ant3 1134 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
12 fnfun 6533 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
13 funimacnv 6515 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
1412, 13syl 17 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
15143ad2ant1 1132 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
16153ad2ant1 1132 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
171elsetpreimafvbi 44843 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋))))
18 fnfvelrn 6958 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
1918snssd 4742 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑦𝐴) → {(𝐹𝑦)} ⊆ ran 𝐹)
20 df-ss 3904 . . . . . . . . . . . 12 ({(𝐹𝑦)} ⊆ ran 𝐹 ↔ ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
2119, 20sylib 217 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
22213adant3 1131 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
23 simp3 1137 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → (𝐹𝑦) = (𝐹𝑋))
2423sneqd 4573 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → {(𝐹𝑦)} = {(𝐹𝑋)})
2522, 24eqtrd 2778 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
26253expib 1121 . . . . . . . 8 (𝐹 Fn 𝐴 → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
27263ad2ant1 1132 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2817, 27sylbid 239 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2928imp 407 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
30293adant3 1131 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
3111, 16, 303eqtrd 2782 . . 3 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = {(𝐹𝑋)})
3231rexlimdv3a 3215 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = {(𝐹𝑋)}))
339, 32mpd 15 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  cin 3886  wss 3887  {csn 4561  ccnv 5588  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  uniimaelsetpreimafv  44848
  Copyright terms: Public domain W3C validator