Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaelsetpreimafv Structured version   Visualization version   GIF version

Theorem imaelsetpreimafv 47269
Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
imaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝑋(𝑧)

Proof of Theorem imaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21fvelsetpreimafv 47261 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
43sneqd 4660 . . . . . . 7 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
54imaeq2d 6089 . . . . . 6 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
65eqeq2d 2751 . . . . 5 (𝑦 = 𝑥 → (𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑆 = (𝐹 “ {(𝐹𝑥)})))
76cbvrexvw 3244 . . . 4 (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
82, 7sylibr 234 . . 3 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
983adant3 1132 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
10 imaeq2 6085 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
11103ad2ant3 1135 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
12 fnfun 6679 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
13 funimacnv 6659 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
1412, 13syl 17 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
15143ad2ant1 1133 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
16153ad2ant1 1133 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
171elsetpreimafvbi 47265 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋))))
18 fnfvelrn 7114 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
1918snssd 4834 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑦𝐴) → {(𝐹𝑦)} ⊆ ran 𝐹)
20 dfss2 3994 . . . . . . . . . . . 12 ({(𝐹𝑦)} ⊆ ran 𝐹 ↔ ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
2119, 20sylib 218 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
22213adant3 1132 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
23 simp3 1138 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → (𝐹𝑦) = (𝐹𝑋))
2423sneqd 4660 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → {(𝐹𝑦)} = {(𝐹𝑋)})
2522, 24eqtrd 2780 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
26253expib 1122 . . . . . . . 8 (𝐹 Fn 𝐴 → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
27263ad2ant1 1133 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2817, 27sylbid 240 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2928imp 406 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
30293adant3 1132 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
3111, 16, 303eqtrd 2784 . . 3 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = {(𝐹𝑋)})
3231rexlimdv3a 3165 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = {(𝐹𝑋)}))
339, 32mpd 15 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  cin 3975  wss 3976  {csn 4648  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  uniimaelsetpreimafv  47270
  Copyright terms: Public domain W3C validator