Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaelsetpreimafv Structured version   Visualization version   GIF version

Theorem imaelsetpreimafv 46872
Description: The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
imaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝑋(𝑧)

Proof of Theorem imaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21fvelsetpreimafv 46864 . . . 4 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 fveq2 6896 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
43sneqd 4642 . . . . . . 7 (𝑦 = 𝑥 → {(𝐹𝑦)} = {(𝐹𝑥)})
54imaeq2d 6064 . . . . . 6 (𝑦 = 𝑥 → (𝐹 “ {(𝐹𝑦)}) = (𝐹 “ {(𝐹𝑥)}))
65eqeq2d 2736 . . . . 5 (𝑦 = 𝑥 → (𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ 𝑆 = (𝐹 “ {(𝐹𝑥)})))
76cbvrexvw 3225 . . . 4 (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) ↔ ∃𝑥𝑆 𝑆 = (𝐹 “ {(𝐹𝑥)}))
82, 7sylibr 233 . . 3 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
983adant3 1129 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}))
10 imaeq2 6060 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
11103ad2ant3 1132 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = (𝐹 “ (𝐹 “ {(𝐹𝑦)})))
12 fnfun 6655 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
13 funimacnv 6635 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
1412, 13syl 17 . . . . . 6 (𝐹 Fn 𝐴 → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
15143ad2ant1 1130 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
16153ad2ant1 1130 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹 “ (𝐹 “ {(𝐹𝑦)})) = ({(𝐹𝑦)} ∩ ran 𝐹))
171elsetpreimafvbi 46868 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 ↔ (𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋))))
18 fnfvelrn 7089 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
1918snssd 4814 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑦𝐴) → {(𝐹𝑦)} ⊆ ran 𝐹)
20 dfss2 3962 . . . . . . . . . . . 12 ({(𝐹𝑦)} ⊆ ran 𝐹 ↔ ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
2119, 20sylib 217 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
22213adant3 1129 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑦)})
23 simp3 1135 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → (𝐹𝑦) = (𝐹𝑋))
2423sneqd 4642 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → {(𝐹𝑦)} = {(𝐹𝑋)})
2522, 24eqtrd 2765 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
26253expib 1119 . . . . . . . 8 (𝐹 Fn 𝐴 → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
27263ad2ant1 1130 . . . . . . 7 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑦𝐴 ∧ (𝐹𝑦) = (𝐹𝑋)) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2817, 27sylbid 239 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑦𝑆 → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)}))
2928imp 405 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
30293adant3 1129 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → ({(𝐹𝑦)} ∩ ran 𝐹) = {(𝐹𝑋)})
3111, 16, 303eqtrd 2769 . . 3 (((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) ∧ 𝑦𝑆𝑆 = (𝐹 “ {(𝐹𝑦)})) → (𝐹𝑆) = {(𝐹𝑋)})
3231rexlimdv3a 3148 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (∃𝑦𝑆 𝑆 = (𝐹 “ {(𝐹𝑦)}) → (𝐹𝑆) = {(𝐹𝑋)}))
339, 32mpd 15 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝐹𝑆) = {(𝐹𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  cin 3943  wss 3944  {csn 4630  ccnv 5677  ran crn 5679  cima 5681  Fun wfun 6543   Fn wfn 6544  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557
This theorem is referenced by:  uniimaelsetpreimafv  46873
  Copyright terms: Public domain W3C validator