Step | Hyp | Ref
| Expression |
1 | | setpreimafvex.p |
. . . . 5
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
2 | 1 | fvelsetpreimafv 44727 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
3 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
4 | 3 | sneqd 4570 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → {(𝐹‘𝑦)} = {(𝐹‘𝑥)}) |
5 | 4 | imaeq2d 5958 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (◡𝐹 “ {(𝐹‘𝑦)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
6 | 5 | eqeq2d 2749 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑆 = (◡𝐹 “ {(𝐹‘𝑦)}) ↔ 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) |
7 | 6 | cbvrexvw 3373 |
. . . 4
⊢
(∃𝑦 ∈
𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)}) ↔ ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) |
8 | 2, 7 | sylibr 233 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑦 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)})) |
9 | 8 | 3adant3 1130 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → ∃𝑦 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)})) |
10 | | imaeq2 5954 |
. . . . 5
⊢ (𝑆 = (◡𝐹 “ {(𝐹‘𝑦)}) → (𝐹 “ 𝑆) = (𝐹 “ (◡𝐹 “ {(𝐹‘𝑦)}))) |
11 | 10 | 3ad2ant3 1133 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)})) → (𝐹 “ 𝑆) = (𝐹 “ (◡𝐹 “ {(𝐹‘𝑦)}))) |
12 | | fnfun 6517 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
13 | | funimacnv 6499 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝐹 “ (◡𝐹 “ {(𝐹‘𝑦)})) = ({(𝐹‘𝑦)} ∩ ran 𝐹)) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → (𝐹 “ (◡𝐹 “ {(𝐹‘𝑦)})) = ({(𝐹‘𝑦)} ∩ ran 𝐹)) |
15 | 14 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝐹 “ (◡𝐹 “ {(𝐹‘𝑦)})) = ({(𝐹‘𝑦)} ∩ ran 𝐹)) |
16 | 15 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)})) → (𝐹 “ (◡𝐹 “ {(𝐹‘𝑦)})) = ({(𝐹‘𝑦)} ∩ ran 𝐹)) |
17 | 1 | elsetpreimafvbi 44731 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)))) |
18 | | fnfvelrn 6940 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ran 𝐹) |
19 | 18 | snssd 4739 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → {(𝐹‘𝑦)} ⊆ ran 𝐹) |
20 | | df-ss 3900 |
. . . . . . . . . . . 12
⊢ ({(𝐹‘𝑦)} ⊆ ran 𝐹 ↔ ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑦)}) |
21 | 19, 20 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑦)}) |
22 | 21 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑦)}) |
23 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)) → (𝐹‘𝑦) = (𝐹‘𝑋)) |
24 | 23 | sneqd 4570 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)) → {(𝐹‘𝑦)} = {(𝐹‘𝑋)}) |
25 | 22, 24 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑋)}) |
26 | 25 | 3expib 1120 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → ((𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑋)})) |
27 | 26 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → ((𝑦 ∈ 𝐴 ∧ (𝐹‘𝑦) = (𝐹‘𝑋)) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑋)})) |
28 | 17, 27 | sylbid 239 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑦 ∈ 𝑆 → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑋)})) |
29 | 28 | imp 406 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑋)}) |
30 | 29 | 3adant3 1130 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)})) → ({(𝐹‘𝑦)} ∩ ran 𝐹) = {(𝐹‘𝑋)}) |
31 | 11, 16, 30 | 3eqtrd 2782 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) ∧ 𝑦 ∈ 𝑆 ∧ 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)})) → (𝐹 “ 𝑆) = {(𝐹‘𝑋)}) |
32 | 31 | rexlimdv3a 3214 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (∃𝑦 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑦)}) → (𝐹 “ 𝑆) = {(𝐹‘𝑋)})) |
33 | 9, 32 | mpd 15 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑋)}) |