![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enpr1g | Structured version Visualization version GIF version |
Description: {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.) |
Ref | Expression |
---|---|
enpr1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4647 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | ensn1g 9070 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
3 | 1, 2 | eqbrtrrid 5187 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {csn 4634 {cpr 4636 class class class wbr 5151 1oc1o 8507 ≈ cen 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-suc 6398 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-1o 8514 df-en 8994 |
This theorem is referenced by: pr2neOLD 10052 |
Copyright terms: Public domain | W3C validator |