MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr1g Structured version   Visualization version   GIF version

Theorem enpr1g 8945
Description: {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.)
Assertion
Ref Expression
enpr1g (𝐴𝑉 → {𝐴, 𝐴} ≈ 1o)

Proof of Theorem enpr1g
StepHypRef Expression
1 dfsn2 4589 . 2 {𝐴} = {𝐴, 𝐴}
2 ensn1g 8944 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
31, 2eqbrtrrid 5127 1 (𝐴𝑉 → {𝐴, 𝐴} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {csn 4576  {cpr 4578   class class class wbr 5091  1oc1o 8378  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-suc 6312  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-1o 8385  df-en 8870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator