Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
Ref | Expression |
---|---|
ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4571 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | breq1d 5084 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
3 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 8807 | . 2 ⊢ {𝑥} ≈ 1o |
5 | 2, 4 | vtoclg 3505 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {csn 4561 class class class wbr 5074 1oc1o 8290 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-1o 8297 df-en 8734 |
This theorem is referenced by: enpr1g 8810 en1b 8813 en1bOLD 8814 snmapen1 8829 en2snOLDOLD 8833 snfi 8834 enpr2d 8838 snnen2oOLD 9010 sucxpdom 9032 en1eqsn 9048 en1eqsnbi 9049 pr2nelem 9760 prdom2 9762 dju1en 9927 triv1nsgd 18801 snct 31048 rngoueqz 36098 sn1dom 41133 |
Copyright terms: Public domain | W3C validator |