MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1g Structured version   Visualization version   GIF version

Theorem ensn1g 8993
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g (𝐴𝑉 → {𝐴} ≈ 1o)

Proof of Theorem ensn1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4599 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21breq1d 5117 . 2 (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o))
3 vex 3451 . . 3 𝑥 ∈ V
43ensn1 8992 . 2 {𝑥} ≈ 1o
52, 4vtoclg 3520 1 (𝐴𝑉 → {𝐴} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4589   class class class wbr 5107  1oc1o 8427  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-1o 8434  df-en 8919
This theorem is referenced by:  enpr1g  8994  en1b  8996  snmapen1  9010  snfi  9014  snfiOLD  9015  enpr2dOLD  9021  sucxpdom  9202  en1eqsnOLD  9220  en1eqsnbi  9221  pr2nelemOLD  9956  prdom2  9959  dju1en  10125  triv1nsgd  19105  snct  32637  rngoueqz  37934  safesnsupfidom1o  43406  sn1dom  43515
  Copyright terms: Public domain W3C validator