MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1g Structured version   Visualization version   GIF version

Theorem ensn1g 8955
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g (𝐴𝑉 → {𝐴} ≈ 1o)

Proof of Theorem ensn1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4587 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21breq1d 5105 . 2 (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o))
3 vex 3441 . . 3 𝑥 ∈ V
43ensn1 8954 . 2 {𝑥} ≈ 1o
52, 4vtoclg 3508 1 (𝐴𝑉 → {𝐴} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577   class class class wbr 5095  1oc1o 8387  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-suc 6320  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-1o 8394  df-en 8880
This theorem is referenced by:  enpr1g  8956  en1b  8958  snmapen1  8972  snfi  8976  sucxpdom  9156  en1eqsnbi  9171  prdom2  9908  dju1en  10074  triv1nsgd  19093  snct  32719  rngoueqz  38053  safesnsupfidom1o  43574  sn1dom  43683
  Copyright terms: Public domain W3C validator