Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
Ref | Expression |
---|---|
ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | breq1d 5080 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
3 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 8761 | . 2 ⊢ {𝑥} ≈ 1o |
5 | 2, 4 | vtoclg 3495 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 1oc1o 8260 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-suc 6257 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-1o 8267 df-en 8692 |
This theorem is referenced by: enpr1g 8764 en1b 8767 en1bOLD 8768 snmapen1 8783 en2snOLDOLD 8787 snfi 8788 enpr2d 8792 snnen2o 8903 sucxpdom 8961 en1eqsn 8977 en1eqsnbi 8978 pr2nelem 9691 prdom2 9693 dju1en 9858 triv1nsgd 18716 snct 30950 rngoueqz 36025 sn1dom 41031 |
Copyright terms: Public domain | W3C validator |