![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
Ref | Expression |
---|---|
ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4658 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | breq1d 5176 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
3 | vex 3492 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 9082 | . 2 ⊢ {𝑥} ≈ 1o |
5 | 2, 4 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 class class class wbr 5166 1oc1o 8515 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-1o 8522 df-en 9004 |
This theorem is referenced by: enpr1g 9085 en1b 9088 en1bOLD 9089 snmapen1 9104 snfi 9109 snfiOLD 9110 enpr2dOLD 9116 snnen2oOLD 9290 sucxpdom 9318 en1eqsnOLD 9337 en1eqsnbi 9338 pr2nelemOLD 10072 prdom2 10075 dju1en 10241 triv1nsgd 19213 snct 32727 rngoueqz 37900 safesnsupfidom1o 43379 sn1dom 43488 |
Copyright terms: Public domain | W3C validator |