| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| Ref | Expression |
|---|---|
| ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4599 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | breq1d 5117 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
| 3 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ensn1 8992 | . 2 ⊢ {𝑥} ≈ 1o |
| 5 | 2, 4 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 class class class wbr 5107 1oc1o 8427 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-1o 8434 df-en 8919 |
| This theorem is referenced by: enpr1g 8994 en1b 8996 snmapen1 9010 snfi 9014 snfiOLD 9015 enpr2dOLD 9021 sucxpdom 9202 en1eqsnOLD 9220 en1eqsnbi 9221 pr2nelemOLD 9956 prdom2 9959 dju1en 10125 triv1nsgd 19105 snct 32637 rngoueqz 37934 safesnsupfidom1o 43406 sn1dom 43515 |
| Copyright terms: Public domain | W3C validator |