Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
Ref | Expression |
---|---|
ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4533 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | breq1d 5043 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
3 | vex 3414 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 8593 | . 2 ⊢ {𝑥} ≈ 1o |
5 | 2, 4 | vtoclg 3486 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 {csn 4523 class class class wbr 5033 1oc1o 8106 ≈ cen 8525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-suc 6176 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-1o 8113 df-en 8529 |
This theorem is referenced by: enpr1g 8595 en1b 8597 snmapen1 8611 en2snOLD 8614 snfi 8615 enpr2d 8618 snnen2o 8729 sucxpdom 8749 en1eqsn 8770 en1eqsnbi 8771 pr2nelem 9457 prdom2 9459 dju1en 9624 triv1nsgd 18385 snct 30565 rngoueqz 35651 sn1dom 40600 |
Copyright terms: Public domain | W3C validator |