| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| Ref | Expression |
|---|---|
| ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4581 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | breq1d 5096 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
| 3 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ensn1 8938 | . 2 ⊢ {𝑥} ≈ 1o |
| 5 | 2, 4 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 class class class wbr 5086 1oc1o 8373 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-suc 6307 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-1o 8380 df-en 8865 |
| This theorem is referenced by: enpr1g 8940 en1b 8942 snmapen1 8956 snfi 8960 sucxpdom 9140 en1eqsnbi 9155 prdom2 9892 dju1en 10058 triv1nsgd 19080 snct 32687 rngoueqz 37980 safesnsupfidom1o 43450 sn1dom 43559 |
| Copyright terms: Public domain | W3C validator |