![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
Ref | Expression |
---|---|
ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4378 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | breq1d 4853 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1𝑜 ↔ {𝐴} ≈ 1𝑜)) |
3 | vex 3388 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 8259 | . 2 ⊢ {𝑥} ≈ 1𝑜 |
5 | 2, 4 | vtoclg 3453 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {csn 4368 class class class wbr 4843 1𝑜c1o 7792 ≈ cen 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-suc 5947 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-1o 7799 df-en 8196 |
This theorem is referenced by: enpr1g 8261 en1b 8263 snmapen1 8277 en2sn 8279 snfi 8280 snnen2o 8391 sucxpdom 8411 en1eqsn 8432 en1eqsnbi 8433 pr2nelem 9113 prdom2 9115 cda1en 9285 snct 30009 rngoueqz 34226 |
Copyright terms: Public domain | W3C validator |