MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1g Structured version   Visualization version   GIF version

Theorem ensn1g 9036
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
Assertion
Ref Expression
ensn1g (𝐴𝑉 → {𝐴} ≈ 1o)

Proof of Theorem ensn1g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4611 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21breq1d 5129 . 2 (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o))
3 vex 3463 . . 3 𝑥 ∈ V
43ensn1 9035 . 2 {𝑥} ≈ 1o
52, 4vtoclg 3533 1 (𝐴𝑉 → {𝐴} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4601   class class class wbr 5119  1oc1o 8473  cen 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-suc 6358  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-1o 8480  df-en 8960
This theorem is referenced by:  enpr1g  9037  en1b  9039  snmapen1  9053  snfi  9057  snfiOLD  9058  enpr2dOLD  9064  snnen2oOLD  9236  sucxpdom  9263  en1eqsnOLD  9281  en1eqsnbi  9282  pr2nelemOLD  10017  prdom2  10020  dju1en  10186  triv1nsgd  19156  snct  32691  rngoueqz  37964  safesnsupfidom1o  43441  sn1dom  43550
  Copyright terms: Public domain W3C validator