| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
| Ref | Expression |
|---|---|
| ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4602 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | breq1d 5120 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1o ↔ {𝐴} ≈ 1o)) |
| 3 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ensn1 8995 | . 2 ⊢ {𝑥} ≈ 1o |
| 5 | 2, 4 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 class class class wbr 5110 1oc1o 8430 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-suc 6341 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-1o 8437 df-en 8922 |
| This theorem is referenced by: enpr1g 8997 en1b 8999 snmapen1 9013 snfi 9017 snfiOLD 9018 enpr2dOLD 9024 sucxpdom 9209 en1eqsnOLD 9227 en1eqsnbi 9228 pr2nelemOLD 9963 prdom2 9966 dju1en 10132 triv1nsgd 19112 snct 32644 rngoueqz 37941 safesnsupfidom1o 43413 sn1dom 43522 |
| Copyright terms: Public domain | W3C validator |