![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner | Structured version Visualization version GIF version |
Description: The relation used to define ℙ𝕣𝕠𝕛 (and indirectly ℙ𝕣𝕠𝕛n through df-prjspn 42618) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr 42608 and prjspersym 42610 (see prjspnerlem 42620). Several theorems are covered in one thanks to the theorems around df-er 8753. (Contributed by SN, 14-Aug-2023.) |
Ref | Expression |
---|---|
prjspner.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspner.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspner.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspner.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspner.x | ⊢ · = ( ·𝑠 ‘𝑊) |
prjspner.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
Ref | Expression |
---|---|
prjspner | ⊢ (𝜑 → ∼ Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspner.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
2 | ovexd 7473 | . . . 4 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
3 | prjspner.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
4 | 3 | frlmlvec 21808 | . . . 4 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) |
6 | eqid 2737 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} | |
7 | prjspner.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
8 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
9 | prjspner.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | eqid 2737 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
11 | 6, 7, 8, 9, 10 | prjsper 42611 | . . 3 ⊢ (𝑊 ∈ LVec → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵) |
12 | 5, 11 | syl 17 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵) |
13 | prjspner.e | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
14 | prjspner.s | . . . 4 ⊢ 𝑆 = (Base‘𝐾) | |
15 | 13, 3, 7, 14, 9 | prjspnerlem 42620 | . . 3 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
16 | ereq1 8760 | . . 3 ⊢ ( ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} → ( ∼ Er 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵)) | |
17 | 1, 15, 16 | 3syl 18 | . 2 ⊢ (𝜑 → ( ∼ Er 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵)) |
18 | 12, 17 | mpbird 257 | 1 ⊢ (𝜑 → ∼ Er 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 Vcvv 3481 ∖ cdif 3963 {csn 4634 {copab 5213 ‘cfv 6569 (class class class)co 7438 Er wer 8750 0cc0 11162 ...cfz 13553 Basecbs 17254 Scalarcsca 17310 ·𝑠 cvsca 17311 0gc0g 17495 DivRingcdr 20755 LVecclvec 21128 freeLMod cfrlm 21793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-hom 17331 df-cco 17332 df-0g 17497 df-prds 17503 df-pws 17505 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrg 20596 df-drng 20757 df-lmod 20886 df-lss 20957 df-lvec 21129 df-sra 21199 df-rgmod 21200 df-dsmm 21779 df-frlm 21794 |
This theorem is referenced by: prjspnssbas 42624 prjspnn0 42625 prjspner01 42628 prjspner1 42629 |
Copyright terms: Public domain | W3C validator |