| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspner | Structured version Visualization version GIF version | ||
| Description: The relation used to define ℙ𝕣𝕠𝕛 (and indirectly ℙ𝕣𝕠𝕛n through df-prjspn 42563) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr 42553 and prjspersym 42555 (see prjspnerlem 42565). Several theorems are covered in one thanks to the theorems around df-er 8726. (Contributed by SN, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| prjspner.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
| prjspner.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
| prjspner.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| prjspner.s | ⊢ 𝑆 = (Base‘𝐾) |
| prjspner.x | ⊢ · = ( ·𝑠 ‘𝑊) |
| prjspner.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| Ref | Expression |
|---|---|
| prjspner | ⊢ (𝜑 → ∼ Er 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspner.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 2 | ovexd 7447 | . . . 4 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 3 | prjspner.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
| 4 | 3 | frlmlvec 21734 | . . . 4 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) |
| 6 | eqid 2734 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} | |
| 7 | prjspner.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 9 | prjspner.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 10 | eqid 2734 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 11 | 6, 7, 8, 9, 10 | prjsper 42556 | . . 3 ⊢ (𝑊 ∈ LVec → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵) |
| 12 | 5, 11 | syl 17 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵) |
| 13 | prjspner.e | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
| 14 | prjspner.s | . . . 4 ⊢ 𝑆 = (Base‘𝐾) | |
| 15 | 13, 3, 7, 14, 9 | prjspnerlem 42565 | . . 3 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
| 16 | ereq1 8733 | . . 3 ⊢ ( ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} → ( ∼ Er 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵)) | |
| 17 | 1, 15, 16 | 3syl 18 | . 2 ⊢ (𝜑 → ( ∼ Er 𝐵 ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))} Er 𝐵)) |
| 18 | 12, 17 | mpbird 257 | 1 ⊢ (𝜑 → ∼ Er 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3463 ∖ cdif 3928 {csn 4606 {copab 5185 ‘cfv 6540 (class class class)co 7412 Er wer 8723 0cc0 11136 ...cfz 13528 Basecbs 17228 Scalarcsca 17275 ·𝑠 cvsca 17276 0gc0g 17454 DivRingcdr 20696 LVecclvec 21068 freeLMod cfrlm 21719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-hom 17296 df-cco 17297 df-0g 17456 df-prds 17462 df-pws 17464 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-grp 18922 df-minusg 18923 df-sbg 18924 df-subg 19109 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-ring 20199 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-subrg 20537 df-drng 20698 df-lmod 20827 df-lss 20897 df-lvec 21069 df-sra 21139 df-rgmod 21140 df-dsmm 21705 df-frlm 21720 |
| This theorem is referenced by: prjspnssbas 42569 prjspnn0 42570 prjspner01 42573 prjspner1 42574 |
| Copyright terms: Public domain | W3C validator |