MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efglem Structured version   Visualization version   GIF version

Theorem efglem 18569
Description: Lemma for efgval 18570. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
Assertion
Ref Expression
efglem 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧

Proof of Theorem efglem
StepHypRef Expression
1 xpider 8221 . 2 (𝑊 × 𝑊) Er 𝑊
2 simpll 763 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥𝑊)
3 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
4 fviss 6611 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
53, 4eqsstri 3924 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
65, 2sseldi 3889 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
7 opelxpi 5483 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2o))
87adantl 482 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2o))
9 2oconcl 7982 . . . . . . . . . 10 (𝑧 ∈ 2o → (1o𝑧) ∈ 2o)
10 opelxpi 5483 . . . . . . . . . 10 ((𝑦𝐼 ∧ (1o𝑧) ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
119, 10sylan2 592 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
1211adantl 482 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
138, 12s2cld 14069 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩ ∈ Word (𝐼 × 2o))
14 splcl 13950 . . . . . . 7 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
156, 13, 14syl2anc 584 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
163efgrcl 18568 . . . . . . . 8 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1716simprd 496 . . . . . . 7 (𝑥𝑊𝑊 = Word (𝐼 × 2o))
1817ad2antrr 722 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
1915, 18eleqtrrd 2885 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ 𝑊)
20 brxp 5492 . . . . 5 (𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ 𝑊))
212, 19, 20sylanbrc 583 . . . 4 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
2221ralrimivva 3157 . . 3 ((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) → ∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
2322rgen2 3169 . 2 𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)
243fvexi 6555 . . . 4 𝑊 ∈ V
2524, 24xpex 7336 . . 3 (𝑊 × 𝑊) ∈ V
26 ereq1 8149 . . . 4 (𝑟 = (𝑊 × 𝑊) → (𝑟 Er 𝑊 ↔ (𝑊 × 𝑊) Er 𝑊))
27 breq 4966 . . . . . 6 (𝑟 = (𝑊 × 𝑊) → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
28272ralbidv 3165 . . . . 5 (𝑟 = (𝑊 × 𝑊) → (∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
29282ralbidv 3165 . . . 4 (𝑟 = (𝑊 × 𝑊) → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
3026, 29anbi12d 630 . . 3 (𝑟 = (𝑊 × 𝑊) → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) ↔ ((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))))
3125, 30spcev 3547 . 2 (((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) → ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
321, 23, 31mp2an 688 1 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wex 1762  wcel 2080  wral 3104  Vcvv 3436  cdif 3858  cop 4480  cotp 4482   class class class wbr 4964   I cid 5350   × cxp 5444  cfv 6228  (class class class)co 7019  1oc1o 7949  2oc2o 7950   Er wer 8139  0cc0 10386  ...cfz 12742  chash 13540  Word cword 13707   splice csplice 13947  ⟨“cs2 14039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-ot 4483  df-uni 4748  df-int 4785  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-2o 7957  df-oadd 7960  df-er 8142  df-map 8261  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-nn 11489  df-n0 11748  df-z 11832  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-concat 13769  df-s1 13794  df-substr 13839  df-pfx 13869  df-splice 13948  df-s2 14046
This theorem is referenced by:  efgval  18570  efger  18571
  Copyright terms: Public domain W3C validator