Proof of Theorem efglem
Step | Hyp | Ref
| Expression |
1 | | xpider 8577 |
. 2
⊢ (𝑊 × 𝑊) Er 𝑊 |
2 | | simpll 764 |
. . . . 5
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 𝑥 ∈ 𝑊) |
3 | | efgval.w |
. . . . . . . . 9
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
4 | | fviss 6845 |
. . . . . . . . 9
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
5 | 3, 4 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
6 | 5, 2 | sselid 3919 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o)) |
7 | | opelxpi 5626 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o) → 〈𝑦, 𝑧〉 ∈ (𝐼 × 2o)) |
8 | 7 | adantl 482 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 〈𝑦, 𝑧〉 ∈ (𝐼 × 2o)) |
9 | | 2oconcl 8333 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 2o →
(1o ∖ 𝑧)
∈ 2o) |
10 | | opelxpi 5626 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐼 ∧ (1o ∖ 𝑧) ∈ 2o) →
〈𝑦, (1o
∖ 𝑧)〉 ∈
(𝐼 ×
2o)) |
11 | 9, 10 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 ×
2o)) |
12 | 11 | adantl 482 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 〈𝑦, (1o ∖ 𝑧)〉 ∈ (𝐼 ×
2o)) |
13 | 8, 12 | s2cld 14584 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) →
〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉 ∈ Word (𝐼 ×
2o)) |
14 | | splcl 14465 |
. . . . . . 7
⊢ ((𝑥 ∈ Word (𝐼 × 2o) ∧
〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉 ∈ Word (𝐼 × 2o)) →
(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ∈ Word
(𝐼 ×
2o)) |
15 | 6, 13, 14 | syl2anc 584 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ∈ Word
(𝐼 ×
2o)) |
16 | 3 | efgrcl 19321 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
17 | 16 | simprd 496 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
18 | 17 | ad2antrr 723 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o)) |
19 | 15, 18 | eleqtrrd 2842 |
. . . . 5
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ∈ 𝑊) |
20 | | brxp 5636 |
. . . . 5
⊢ (𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ↔ (𝑥 ∈ 𝑊 ∧ (𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ∈ 𝑊)) |
21 | 2, 19, 20 | sylanbrc 583 |
. . . 4
⊢ (((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2o)) → 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) |
22 | 21 | ralrimivva 3123 |
. . 3
⊢ ((𝑥 ∈ 𝑊 ∧ 𝑛 ∈ (0...(♯‘𝑥))) → ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) |
23 | 22 | rgen2 3120 |
. 2
⊢
∀𝑥 ∈
𝑊 ∀𝑛 ∈
(0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) |
24 | 3 | fvexi 6788 |
. . . 4
⊢ 𝑊 ∈ V |
25 | 24, 24 | xpex 7603 |
. . 3
⊢ (𝑊 × 𝑊) ∈ V |
26 | | ereq1 8505 |
. . . 4
⊢ (𝑟 = (𝑊 × 𝑊) → (𝑟 Er 𝑊 ↔ (𝑊 × 𝑊) Er 𝑊)) |
27 | | breq 5076 |
. . . . . 6
⊢ (𝑟 = (𝑊 × 𝑊) → (𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ↔ 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))) |
28 | 27 | 2ralbidv 3129 |
. . . . 5
⊢ (𝑟 = (𝑊 × 𝑊) → (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ↔
∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))) |
29 | 28 | 2ralbidv 3129 |
. . . 4
⊢ (𝑟 = (𝑊 × 𝑊) → (∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉) ↔
∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))) |
30 | 26, 29 | anbi12d 631 |
. . 3
⊢ (𝑟 = (𝑊 × 𝑊) → ((𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) ↔ ((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)))) |
31 | 25, 30 | spcev 3545 |
. 2
⊢ (((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) →
∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))) |
32 | 1, 23, 31 | mp2an 689 |
1
⊢
∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥 ∈ 𝑊 ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉)) |