MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efglem Structured version   Visualization version   GIF version

Theorem efglem 19060
Description: Lemma for efgval 19061. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
Assertion
Ref Expression
efglem 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧

Proof of Theorem efglem
StepHypRef Expression
1 xpider 8448 . 2 (𝑊 × 𝑊) Er 𝑊
2 simpll 767 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥𝑊)
3 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
4 fviss 6766 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
53, 4eqsstri 3921 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
65, 2sseldi 3885 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
7 opelxpi 5573 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2o))
87adantl 485 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2o))
9 2oconcl 8208 . . . . . . . . . 10 (𝑧 ∈ 2o → (1o𝑧) ∈ 2o)
10 opelxpi 5573 . . . . . . . . . 10 ((𝑦𝐼 ∧ (1o𝑧) ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
119, 10sylan2 596 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
1211adantl 485 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
138, 12s2cld 14401 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩ ∈ Word (𝐼 × 2o))
14 splcl 14282 . . . . . . 7 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
156, 13, 14syl2anc 587 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
163efgrcl 19059 . . . . . . . 8 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1716simprd 499 . . . . . . 7 (𝑥𝑊𝑊 = Word (𝐼 × 2o))
1817ad2antrr 726 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
1915, 18eleqtrrd 2834 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ 𝑊)
20 brxp 5583 . . . . 5 (𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ 𝑊))
212, 19, 20sylanbrc 586 . . . 4 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
2221ralrimivva 3102 . . 3 ((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) → ∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
2322rgen2 3114 . 2 𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)
243fvexi 6709 . . . 4 𝑊 ∈ V
2524, 24xpex 7516 . . 3 (𝑊 × 𝑊) ∈ V
26 ereq1 8376 . . . 4 (𝑟 = (𝑊 × 𝑊) → (𝑟 Er 𝑊 ↔ (𝑊 × 𝑊) Er 𝑊))
27 breq 5041 . . . . . 6 (𝑟 = (𝑊 × 𝑊) → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
28272ralbidv 3110 . . . . 5 (𝑟 = (𝑊 × 𝑊) → (∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
29282ralbidv 3110 . . . 4 (𝑟 = (𝑊 × 𝑊) → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
3026, 29anbi12d 634 . . 3 (𝑟 = (𝑊 × 𝑊) → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) ↔ ((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))))
3125, 30spcev 3511 . 2 (((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) → ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
321, 23, 31mp2an 692 1 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wex 1787  wcel 2112  wral 3051  Vcvv 3398  cdif 3850  cop 4533  cotp 4535   class class class wbr 5039   I cid 5439   × cxp 5534  cfv 6358  (class class class)co 7191  1oc1o 8173  2oc2o 8174   Er wer 8366  0cc0 10694  ...cfz 13060  chash 13861  Word cword 14034   splice csplice 14279  ⟨“cs2 14371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-splice 14280  df-s2 14378
This theorem is referenced by:  efgval  19061  efger  19062
  Copyright terms: Public domain W3C validator