MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efglem Structured version   Visualization version   GIF version

Theorem efglem 19646
Description: Lemma for efgval 19647. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
Assertion
Ref Expression
efglem 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧

Proof of Theorem efglem
StepHypRef Expression
1 xpider 8761 . 2 (𝑊 × 𝑊) Er 𝑊
2 simpll 766 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥𝑊)
3 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
4 fviss 6938 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
53, 4eqsstri 3993 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
65, 2sselid 3944 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
7 opelxpi 5675 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2o))
87adantl 481 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2o))
9 2oconcl 8467 . . . . . . . . . 10 (𝑧 ∈ 2o → (1o𝑧) ∈ 2o)
10 opelxpi 5675 . . . . . . . . . 10 ((𝑦𝐼 ∧ (1o𝑧) ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
119, 10sylan2 593 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2o) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
1211adantl 481 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨𝑦, (1o𝑧)⟩ ∈ (𝐼 × 2o))
138, 12s2cld 14837 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩ ∈ Word (𝐼 × 2o))
14 splcl 14717 . . . . . . 7 ((𝑥 ∈ Word (𝐼 × 2o) ∧ ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩ ∈ Word (𝐼 × 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
156, 13, 14syl2anc 584 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2o))
163efgrcl 19645 . . . . . . . 8 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1716simprd 495 . . . . . . 7 (𝑥𝑊𝑊 = Word (𝐼 × 2o))
1817ad2antrr 726 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑊 = Word (𝐼 × 2o))
1915, 18eleqtrrd 2831 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ 𝑊)
20 brxp 5687 . . . . 5 (𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ∈ 𝑊))
212, 19, 20sylanbrc 583 . . . 4 (((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2o)) → 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
2221ralrimivva 3180 . . 3 ((𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))) → ∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
2322rgen2 3177 . 2 𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)
243fvexi 6872 . . . 4 𝑊 ∈ V
2524, 24xpex 7729 . . 3 (𝑊 × 𝑊) ∈ V
26 ereq1 8678 . . . 4 (𝑟 = (𝑊 × 𝑊) → (𝑟 Er 𝑊 ↔ (𝑊 × 𝑊) Er 𝑊))
27 breq 5109 . . . . . 6 (𝑟 = (𝑊 × 𝑊) → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
28272ralbidv 3201 . . . . 5 (𝑟 = (𝑊 × 𝑊) → (∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
29282ralbidv 3201 . . . 4 (𝑟 = (𝑊 × 𝑊) → (∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
3026, 29anbi12d 632 . . 3 (𝑟 = (𝑊 × 𝑊) → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) ↔ ((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))))
3125, 30spcev 3572 . 2 (((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) → ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
321, 23, 31mp2an 692 1 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cop 4595  cotp 4597   class class class wbr 5107   I cid 5532   × cxp 5636  cfv 6511  (class class class)co 7387  1oc1o 8427  2oc2o 8428   Er wer 8668  0cc0 11068  ...cfz 13468  chash 14295  Word cword 14478   splice csplice 14714  ⟨“cs2 14807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-s2 14814
This theorem is referenced by:  efgval  19647  efger  19648
  Copyright terms: Public domain W3C validator