MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsubsubfz Structured version   Visualization version   GIF version

Theorem uzsubsubfz 12923
Description: Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 12243 . . 3 (𝐿 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿))
2 eluz2 12243 . . . 4 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
3 simpr 487 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpr 487 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54adantr 483 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
6 zsubcl 12018 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
76adantlr 713 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
85, 7zsubcld 12086 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑁 − (𝐿𝑀)) ∈ ℤ)
93, 5, 83jca 1124 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
109ex 415 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
11103adant3 1128 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1211com12 32 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1312adantr 483 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1413imp 409 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
15 zre 11979 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1615adantl 484 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
1716adantr 483 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝑁 ∈ ℝ)
18 zre 11979 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1918adantr 483 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℝ)
2019adantr 483 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝐿 ∈ ℝ)
2117, 20subge0d 11224 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
2221exbiri 809 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → (𝐿𝑁 → 0 ≤ (𝑁𝐿))))
2322com23 86 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿))))
24233impia 1113 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿)))
2524impcom 410 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝑁𝐿))
26 zre 11979 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2726adantr 483 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℝ)
2827adantr 483 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℝ)
29 resubcl 10944 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝐿) ∈ ℝ)
3015, 18, 29syl2anr 598 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℝ)
31303adant3 1128 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℝ)
3231adantl 484 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁𝐿) ∈ ℝ)
3328, 32addge02d 11223 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝑁𝐿) ↔ 𝑀 ≤ ((𝑁𝐿) + 𝑀)))
3425, 33mpbid 234 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ ((𝑁𝐿) + 𝑀))
35 zcn 11980 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
36353ad2ant2 1130 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℂ)
3736adantl 484 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℂ)
38 zcn 11980 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
39383ad2ant1 1129 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℂ)
4039adantl 484 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝐿 ∈ ℂ)
41 zcn 11980 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 483 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℂ)
4342adantr 483 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℂ)
4437, 40, 43subsubd 11019 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) = ((𝑁𝐿) + 𝑀))
4534, 44breqtrrd 5087 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ (𝑁 − (𝐿𝑀)))
46183ad2ant1 1129 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℝ)
47 subge0 11147 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4846, 26, 47syl2anr 598 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4948exbiri 809 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐿 → 0 ≤ (𝐿𝑀))))
5049com23 86 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀𝐿 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 0 ≤ (𝐿𝑀))))
5150imp31 420 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝐿𝑀))
52153ad2ant2 1130 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℝ)
5352adantl 484 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℝ)
54 resubcl 10944 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
5546, 27, 54syl2anr 598 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝐿𝑀) ∈ ℝ)
5653, 55subge02d 11226 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
5751, 56mpbid 234 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ≤ 𝑁)
5845, 57jca 514 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
59 elfz2 12893 . . . . . . 7 ((𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁)))
6014, 58, 59sylanbrc 585 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
6160ex 415 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
62613adant2 1127 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
632, 62syl5bi 244 . . 3 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
641, 63sylbi 219 . 2 (𝐿 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
6564imp 409 1 ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534  cle 10670  cmin 10864  cz 11975  cuz 12237  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887
This theorem is referenced by:  uzsubsubfz1  12924
  Copyright terms: Public domain W3C validator