MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkccatlem Structured version   Visualization version   GIF version

Theorem clwwlkccatlem 27216
Description: Lemma for clwwlkccat 27217: index 𝑗 is shifted up by (♯‘𝐴), and the case 𝑖 = ((♯‘𝐴) − 1) is covered by the "bridge" {(lastS‘𝐴), (𝐵‘0)} = {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺). (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
clwwlkccatlem ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗

Proof of Theorem clwwlkccatlem
StepHypRef Expression
1 simpl 474 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Word (Vtx‘𝐺))
21ad2antrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → 𝐴 ∈ Word (Vtx‘𝐺))
3 simplr 785 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → 𝐵 ∈ Word (Vtx‘𝐺))
4 lencl 13505 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈ ℕ0)
54nn0zd 11727 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈ ℤ)
6 fzossrbm1 12705 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐴) ∈ ℤ → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
75, 6syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Word (Vtx‘𝐺) → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
87ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (0..^((♯‘𝐴) − 1)) ⊆ (0..^(♯‘𝐴)))
98sselda 3761 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → 𝑖 ∈ (0..^(♯‘𝐴)))
10 ccatval1 13548 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴𝑖))
112, 3, 9, 10syl3anc 1490 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐴𝑖))
125ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (♯‘𝐴) ∈ ℤ)
13 elfzom1elp1fzo 12743 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝐴) ∈ ℤ ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝐴)))
1412, 13sylan 575 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝐴)))
15 ccatval1 13548 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐴‘(𝑖 + 1)))
162, 3, 14, 15syl3anc 1490 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐴‘(𝑖 + 1)))
1711, 16preq12d 4431 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} = {(𝐴𝑖), (𝐴‘(𝑖 + 1))})
1817eqcomd 2771 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → {(𝐴𝑖), (𝐴‘(𝑖 + 1))} = {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))})
1918eleq1d 2829 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ({(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2019biimpd 220 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) ∧ 𝑖 ∈ (0..^((♯‘𝐴) − 1))) → ({(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2120ralimdva 3109 . . . . . . . . . . . 12 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2221impancom 443 . . . . . . . . . . 11 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐵 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
23223adant3 1162 . . . . . . . . . 10 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (𝐵 ∈ Word (Vtx‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2423com12 32 . . . . . . . . 9 (𝐵 ∈ Word (Vtx‘𝐺) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2524adantr 472 . . . . . . . 8 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
26253ad2ant1 1163 . . . . . . 7 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2726impcom 396 . . . . . 6 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
28273adant3 1162 . . . . 5 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
291adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐴 ∈ Word (Vtx‘𝐺))
30 simpl 474 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ Word (Vtx‘𝐺))
3130adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐵 ∈ Word (Vtx‘𝐺))
32 simprr 789 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐴 ≠ ∅)
3329, 31, 323jca 1158 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅))
3433adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅))
35 ccatval1lsw 13555 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴))
3634, 35syl 17 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴))
3736eqcomd 2771 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (lastS‘𝐴) = ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)))
38 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
394nn0cnd 11600 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈ ℂ)
40 npcan1 10709 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐴) ∈ ℂ → (((♯‘𝐴) − 1) + 1) = (♯‘𝐴))
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Word (Vtx‘𝐺) → (((♯‘𝐴) − 1) + 1) = (♯‘𝐴))
4241ad2antrl 719 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (((♯‘𝐴) − 1) + 1) = (♯‘𝐴))
4342fveq2d 6379 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1)) = ((𝐴 ++ 𝐵)‘(♯‘𝐴)))
44 simplr 785 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 𝐵 ≠ ∅)
45 ccatval21sw 13556 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0))
4629, 31, 44, 45syl3anc 1490 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0))
4743, 46eqtr2d 2800 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (𝐵‘0) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1)))
4847adantr 472 . . . . . . . . . . . . . . . 16 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1)))
4938, 48eqtrd 2799 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1)))
5037, 49preq12d 4431 . . . . . . . . . . . . . 14 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘𝐴), (𝐴‘0)} = {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))})
5150eleq1d 2829 . . . . . . . . . . . . 13 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))
5251biimpd 220 . . . . . . . . . . . 12 ((((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))
5352ex 401 . . . . . . . . . . 11 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((𝐴‘0) = (𝐵‘0) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))))
5453com23 86 . . . . . . . . . 10 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ({(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))))
5554expimpd 445 . . . . . . . . 9 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))))
56553ad2ant1 1163 . . . . . . . 8 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))))
5756com12 32 . . . . . . 7 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))))
58573adant2 1161 . . . . . 6 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))))
59583imp 1137 . . . . 5 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))
60 ralunb 3956 . . . . . 6 (∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝐴) − 1)} {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
61 ovex 6874 . . . . . . . 8 ((♯‘𝐴) − 1) ∈ V
62 fveq2 6375 . . . . . . . . . 10 (𝑖 = ((♯‘𝐴) − 1) → ((𝐴 ++ 𝐵)‘𝑖) = ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)))
63 fvoveq1 6865 . . . . . . . . . 10 (𝑖 = ((♯‘𝐴) − 1) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1)))
6462, 63preq12d 4431 . . . . . . . . 9 (𝑖 = ((♯‘𝐴) − 1) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} = {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))})
6564eleq1d 2829 . . . . . . . 8 (𝑖 = ((♯‘𝐴) − 1) → ({((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))
6661, 65ralsn 4379 . . . . . . 7 (∀𝑖 ∈ {((♯‘𝐴) − 1)} {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺))
6766anbi2i 616 . . . . . 6 ((∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝐴) − 1)} {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))
6860, 67bitri 266 . . . . 5 (∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)), ((𝐴 ++ 𝐵)‘(((♯‘𝐴) − 1) + 1))} ∈ (Edg‘𝐺)))
6928, 59, 68sylanbrc 578 . . . 4 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
70 0z 11635 . . . . . . . 8 0 ∈ ℤ
71 lennncl 13506 . . . . . . . . 9 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
72 0p1e1 11401 . . . . . . . . . . . 12 (0 + 1) = 1
7372fveq2i 6378 . . . . . . . . . . 11 (ℤ‘(0 + 1)) = (ℤ‘1)
7473eleq2i 2836 . . . . . . . . . 10 ((♯‘𝐴) ∈ (ℤ‘(0 + 1)) ↔ (♯‘𝐴) ∈ (ℤ‘1))
75 elnnuz 11924 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ∈ (ℤ‘1))
7674, 75bitr4i 269 . . . . . . . . 9 ((♯‘𝐴) ∈ (ℤ‘(0 + 1)) ↔ (♯‘𝐴) ∈ ℕ)
7771, 76sylibr 225 . . . . . . . 8 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ (ℤ‘(0 + 1)))
78 fzosplitsnm1 12751 . . . . . . . 8 ((0 ∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ‘(0 + 1))) → (0..^(♯‘𝐴)) = ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}))
7970, 77, 78sylancr 581 . . . . . . 7 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (0..^(♯‘𝐴)) = ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}))
8079raleqdv 3292 . . . . . 6 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
81803ad2ant1 1163 . . . . 5 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
82813ad2ant1 1163 . . . 4 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝐴) − 1)) ∪ {((♯‘𝐴) − 1)}){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8369, 82mpbird 248 . . 3 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
84 lencl 13505 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ Word (Vtx‘𝐺) → (♯‘𝐵) ∈ ℕ0)
8584nn0zd 11727 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ Word (Vtx‘𝐺) → (♯‘𝐵) ∈ ℤ)
86 peano2zm 11667 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐵) ∈ ℤ → ((♯‘𝐵) − 1) ∈ ℤ)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ Word (Vtx‘𝐺) → ((♯‘𝐵) − 1) ∈ ℤ)
8887ad2antrl 719 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐵) − 1) ∈ ℤ)
8988adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐵) − 1) ∈ ℤ)
9089anim1i 608 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (((♯‘𝐵) − 1) ∈ ℤ ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))
9190ancomd 453 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ∧ ((♯‘𝐵) − 1) ∈ ℤ))
92 fzosubel3 12737 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ∧ ((♯‘𝐵) − 1) ∈ ℤ) → (𝑖 − (♯‘𝐴)) ∈ (0..^((♯‘𝐵) − 1)))
93 fveq2 6375 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 − (♯‘𝐴)) → (𝐵𝑗) = (𝐵‘(𝑖 − (♯‘𝐴))))
94 fvoveq1 6865 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 − (♯‘𝐴)) → (𝐵‘(𝑗 + 1)) = (𝐵‘((𝑖 − (♯‘𝐴)) + 1)))
9593, 94preq12d 4431 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑖 − (♯‘𝐴)) → {(𝐵𝑗), (𝐵‘(𝑗 + 1))} = {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))})
9695eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑖 − (♯‘𝐴)) → ({(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ↔ {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺)))
9796rspcv 3457 . . . . . . . . . . . . . . . 16 ((𝑖 − (♯‘𝐴)) ∈ (0..^((♯‘𝐵) − 1)) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺)))
9891, 92, 973syl 18 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺)))
991ad3antrrr 721 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝐴 ∈ Word (Vtx‘𝐺))
10030adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → 𝐵 ∈ Word (Vtx‘𝐺))
101100ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝐵 ∈ Word (Vtx‘𝐺))
1024adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ0)
10384adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ0)
104 nn0addcl 11575 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
105104nn0zd 11727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
106102, 103, 105syl2an 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
107 1nn0 11556 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℕ0
108 eluzmn 11893 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ 1 ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(((♯‘𝐴) + (♯‘𝐵)) − 1)))
109106, 107, 108sylancl 580 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(((♯‘𝐴) + (♯‘𝐵)) − 1)))
11039ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (♯‘𝐴) ∈ ℂ)
11184nn0cnd 11600 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ Word (Vtx‘𝐺) → (♯‘𝐵) ∈ ℂ)
112111ad2antrl 719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (♯‘𝐵) ∈ ℂ)
113 1cnd 10288 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → 1 ∈ ℂ)
114110, 112, 113addsubassd 10666 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (((♯‘𝐴) + (♯‘𝐵)) − 1) = ((♯‘𝐴) + ((♯‘𝐵) − 1)))
115114eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + ((♯‘𝐵) − 1)) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
116115fveq2d 6379 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (ℤ‘((♯‘𝐴) + ((♯‘𝐵) − 1))) = (ℤ‘(((♯‘𝐴) + (♯‘𝐵)) − 1)))
117109, 116eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘((♯‘𝐴) + ((♯‘𝐵) − 1))))
118 fzoss2 12704 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘((♯‘𝐴) + ((♯‘𝐵) − 1))) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ⊆ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ⊆ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
120119adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ⊆ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
121120sselda 3761 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
122 ccatval2 13549 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴))))
12399, 101, 121, 122syl3anc 1490 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝐴 ++ 𝐵)‘𝑖) = (𝐵‘(𝑖 − (♯‘𝐴))))
124115oveq2d 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) = ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)))
125124eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ↔ 𝑖 ∈ ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1))))
126125adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) ↔ 𝑖 ∈ ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1))))
127 eluzmn 11893 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝐴) ∈ ℤ ∧ 1 ∈ ℕ0) → (♯‘𝐴) ∈ (ℤ‘((♯‘𝐴) − 1)))
1285, 107, 127sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈ (ℤ‘((♯‘𝐴) − 1)))
129128ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (♯‘𝐴) ∈ (ℤ‘((♯‘𝐴) − 1)))
130 fzoss1 12703 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐴) ∈ (ℤ‘((♯‘𝐴) − 1)) → ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ⊆ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)))
131129, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ⊆ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)))
132131sseld 3760 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑖 ∈ ((♯‘𝐴)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) → 𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1))))
133126, 132sylbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → 𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1))))
134133imp 395 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)))
1355adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℤ)
13685adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℤ)
137135, 136anim12i 606 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ))
138137adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ))
139 simpl 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
140 zaddcl 11664 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
141139, 140jca 507 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ))
142138, 141syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ))
143 elfzoelz 12678 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → 𝑖 ∈ ℤ)
144 1z 11654 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
145143, 144jctir 516 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → (𝑖 ∈ ℤ ∧ 1 ∈ ℤ))
146 elfzomelpfzo 12780 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) ∧ (𝑖 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ↔ (𝑖 + 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
147142, 145, 146syl2an 589 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝑖 ∈ (((♯‘𝐴) − 1)..^(((♯‘𝐴) + (♯‘𝐵)) − 1)) ↔ (𝑖 + 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
148134, 147mpbid 223 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝑖 + 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
149 ccatval2 13549 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ (𝑖 + 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐵‘((𝑖 + 1) − (♯‘𝐴))))
15099, 101, 148, 149syl3anc 1490 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐵‘((𝑖 + 1) − (♯‘𝐴))))
151143zcnd 11730 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → 𝑖 ∈ ℂ)
152151adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 𝑖 ∈ ℂ)
153 1cnd 10288 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → 1 ∈ ℂ)
154110ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (♯‘𝐴) ∈ ℂ)
155152, 153, 154addsubd 10667 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝑖 + 1) − (♯‘𝐴)) = ((𝑖 − (♯‘𝐴)) + 1))
156155fveq2d 6379 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (𝐵‘((𝑖 + 1) − (♯‘𝐴))) = (𝐵‘((𝑖 − (♯‘𝐴)) + 1)))
157150, 156eqtrd 2799 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ((𝐴 ++ 𝐵)‘(𝑖 + 1)) = (𝐵‘((𝑖 − (♯‘𝐴)) + 1)))
158123, 157preq12d 4431 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} = {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))})
159158eleq1d 2829 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → ({((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝐵‘(𝑖 − (♯‘𝐴))), (𝐵‘((𝑖 − (♯‘𝐴)) + 1))} ∈ (Edg‘𝐺)))
16098, 159sylibrd 250 . . . . . . . . . . . . . 14 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ 𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
161160impancom 443 . . . . . . . . . . . . 13 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺)) → (𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))) → {((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
162161ralrimiv 3112 . . . . . . . . . . . 12 (((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) ∧ (𝐴‘0) = (𝐵‘0)) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
163162exp31 410 . . . . . . . . . . 11 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → ((𝐴‘0) = (𝐵‘0) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
164163expcom 402 . . . . . . . . . 10 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
165164com23 86 . . . . . . . . 9 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
166165com24 95 . . . . . . . 8 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
167166imp 395 . . . . . . 7 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺)) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1681673adant3 1162 . . . . . 6 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
169168com12 32 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1701693ad2ant1 1163 . . . 4 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴‘0) = (𝐵‘0) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1711703imp 1137 . . 3 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
172 ralunb 3956 . . 3 (∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(♯‘𝐴)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17383, 171, 172sylanbrc 578 . 2 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
174 ccatlen 13546 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1751, 30, 174syl2anr 590 . . . . . . . . . . . . 13 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
176175oveq1d 6857 . . . . . . . . . . . 12 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
17739ad2antrl 719 . . . . . . . . . . . . 13 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (♯‘𝐴) ∈ ℂ)
178111ad2antrr 717 . . . . . . . . . . . . 13 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (♯‘𝐵) ∈ ℂ)
179 1cnd 10288 . . . . . . . . . . . . 13 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → 1 ∈ ℂ)
180177, 178, 179addsubassd 10666 . . . . . . . . . . . 12 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (((♯‘𝐴) + (♯‘𝐵)) − 1) = ((♯‘𝐴) + ((♯‘𝐵) − 1)))
181176, 180eqtrd 2799 . . . . . . . . . . 11 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → ((♯‘(𝐴 ++ 𝐵)) − 1) = ((♯‘𝐴) + ((♯‘𝐵) − 1)))
182181oveq2d 6858 . . . . . . . . . 10 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = (0..^((♯‘𝐴) + ((♯‘𝐵) − 1))))
183 elnn0uz 11925 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
1844, 183sylib 209 . . . . . . . . . . . 12 (𝐴 ∈ Word (Vtx‘𝐺) → (♯‘𝐴) ∈ (ℤ‘0))
185184adantr 472 . . . . . . . . . . 11 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ (ℤ‘0))
186 lennncl 13506 . . . . . . . . . . . 12 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
187 nnm1nn0 11581 . . . . . . . . . . . 12 ((♯‘𝐵) ∈ ℕ → ((♯‘𝐵) − 1) ∈ ℕ0)
188186, 187syl 17 . . . . . . . . . . 11 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((♯‘𝐵) − 1) ∈ ℕ0)
189 fzoun 12713 . . . . . . . . . . 11 (((♯‘𝐴) ∈ (ℤ‘0) ∧ ((♯‘𝐵) − 1) ∈ ℕ0) → (0..^((♯‘𝐴) + ((♯‘𝐵) − 1))) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))
190185, 188, 189syl2anr 590 . . . . . . . . . 10 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (0..^((♯‘𝐴) + ((♯‘𝐵) − 1))) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))
191182, 190eqtrd 2799 . . . . . . . . 9 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ (𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅)) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))
192191ex 401 . . . . . . . 8 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))))
1931923ad2ant1 1163 . . . . . . 7 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))))
194193com12 32 . . . . . 6 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))))
1951943ad2ant1 1163 . . . . 5 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1))))))
196195imp 395 . . . 4 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))
1971963adant3 1162 . . 3 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (0..^((♯‘(𝐴 ++ 𝐵)) − 1)) = ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))))
198197raleqdv 3292 . 2 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^(♯‘𝐴)) ∪ ((♯‘𝐴)..^((♯‘𝐴) + ((♯‘𝐵) − 1)))){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
199173, 198mpbird 248 1 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  cun 3730  wss 3732  c0 4079  {csn 4334  {cpr 4336  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cmin 10520  cn 11274  0cn0 11538  cz 11624  cuz 11886  ..^cfzo 12673  chash 13321  Word cword 13486  lastSclsw 13533   ++ cconcat 13541  Vtxcvtx 26165  Edgcedg 26216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542
This theorem is referenced by:  clwwlkccat  27217
  Copyright terms: Public domain W3C validator