![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxn0 | Structured version Visualization version GIF version |
Description: A prefix consisting of at least one symbol is not empty. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxn0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbfzo0 13670 | . . . 4 ⊢ (0 ∈ (0..^𝐿) ↔ 𝐿 ∈ ℕ) | |
2 | ne0i 4327 | . . . 4 ⊢ (0 ∈ (0..^𝐿) → (0..^𝐿) ≠ ∅) | |
3 | 1, 2 | sylbir 234 | . . 3 ⊢ (𝐿 ∈ ℕ → (0..^𝐿) ≠ ∅) |
4 | 3 | 3ad2ant2 1131 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (0..^𝐿) ≠ ∅) |
5 | simp1 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
6 | nnnn0 12477 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0) | |
7 | 6 | 3ad2ant2 1131 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0) |
8 | lencl 14481 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
9 | 8 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
10 | simp3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊)) | |
11 | elfz2nn0 13590 | . . . . . 6 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ≤ (♯‘𝑊))) | |
12 | 7, 9, 10, 11 | syl3anbrc 1340 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊))) |
13 | pfxf 14628 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉) | |
14 | 5, 12, 13 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉) |
15 | f0dom0 6766 | . . . . 5 ⊢ ((𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉 → ((0..^𝐿) = ∅ ↔ (𝑊 prefix 𝐿) = ∅)) | |
16 | 15 | bicomd 222 | . . . 4 ⊢ ((𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉 → ((𝑊 prefix 𝐿) = ∅ ↔ (0..^𝐿) = ∅)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → ((𝑊 prefix 𝐿) = ∅ ↔ (0..^𝐿) = ∅)) |
18 | 17 | necon3bid 2977 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → ((𝑊 prefix 𝐿) ≠ ∅ ↔ (0..^𝐿) ≠ ∅)) |
19 | 4, 18 | mpbird 257 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 class class class wbr 5139 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 0cc0 11107 ≤ cle 11247 ℕcn 12210 ℕ0cn0 12470 ...cfz 13482 ..^cfzo 13625 ♯chash 14288 Word cword 14462 prefix cpfx 14618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-fzo 13626 df-hash 14289 df-word 14463 df-substr 14589 df-pfx 14619 |
This theorem is referenced by: wwlksnred 29618 clwlkclwwlk 29727 clwwlkinwwlk 29765 pfxlsw2ccat 32586 |
Copyright terms: Public domain | W3C validator |