Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxn0 | Structured version Visualization version GIF version |
Description: A prefix consisting of at least one symbol is not empty. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxn0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbfzo0 13127 | . . . 4 ⊢ (0 ∈ (0..^𝐿) ↔ 𝐿 ∈ ℕ) | |
2 | ne0i 4234 | . . . 4 ⊢ (0 ∈ (0..^𝐿) → (0..^𝐿) ≠ ∅) | |
3 | 1, 2 | sylbir 238 | . . 3 ⊢ (𝐿 ∈ ℕ → (0..^𝐿) ≠ ∅) |
4 | 3 | 3ad2ant2 1132 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (0..^𝐿) ≠ ∅) |
5 | simp1 1134 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
6 | nnnn0 11942 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ → 𝐿 ∈ ℕ0) | |
7 | 6 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0) |
8 | lencl 13933 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
9 | 8 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
10 | simp3 1136 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊)) | |
11 | elfz2nn0 13048 | . . . . . 6 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ≤ (♯‘𝑊))) | |
12 | 7, 9, 10, 11 | syl3anbrc 1341 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊))) |
13 | pfxf 14090 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉) | |
14 | 5, 12, 13 | syl2anc 588 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉) |
15 | f0dom0 6549 | . . . . 5 ⊢ ((𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉 → ((0..^𝐿) = ∅ ↔ (𝑊 prefix 𝐿) = ∅)) | |
16 | 15 | bicomd 226 | . . . 4 ⊢ ((𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉 → ((𝑊 prefix 𝐿) = ∅ ↔ (0..^𝐿) = ∅)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → ((𝑊 prefix 𝐿) = ∅ ↔ (0..^𝐿) = ∅)) |
18 | 17 | necon3bid 2996 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → ((𝑊 prefix 𝐿) ≠ ∅ ↔ (0..^𝐿) ≠ ∅)) |
19 | 4, 18 | mpbird 260 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∅c0 4226 class class class wbr 5033 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 0cc0 10576 ≤ cle 10715 ℕcn 11675 ℕ0cn0 11935 ...cfz 12940 ..^cfzo 13083 ♯chash 13741 Word cword 13914 prefix cpfx 14080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-fzo 13084 df-hash 13742 df-word 13915 df-substr 14051 df-pfx 14081 |
This theorem is referenced by: wwlksnred 27778 clwlkclwwlk 27887 clwwlkinwwlk 27925 pfxlsw2ccat 30749 |
Copyright terms: Public domain | W3C validator |