![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f102g | Structured version Visualization version GIF version |
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f102g | ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6699 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∅⟶𝐵)) | |
2 | 1 | biimpa 476 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅⟶𝐵) |
3 | f0bi 6774 | . . . 4 ⊢ (𝐹:∅⟶𝐵 ↔ 𝐹 = ∅) | |
4 | f10 6866 | . . . . 5 ⊢ ∅:∅–1-1→𝐵 | |
5 | f1eq1 6782 | . . . . 5 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐵 ↔ ∅:∅–1-1→𝐵)) | |
6 | 4, 5 | mpbiri 258 | . . . 4 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐵) |
7 | 3, 6 | sylbi 216 | . . 3 ⊢ (𝐹:∅⟶𝐵 → 𝐹:∅–1-1→𝐵) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅–1-1→𝐵) |
9 | f1eq2 6783 | . . 3 ⊢ (𝐴 = ∅ → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) | |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) |
11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∅c0 4322 ⟶wf 6539 –1-1→wf1 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 |
This theorem is referenced by: f1mo 47680 |
Copyright terms: Public domain | W3C validator |