| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f102g | Structured version Visualization version GIF version | ||
| Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f102g | ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6670 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∅⟶𝐵)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅⟶𝐵) |
| 3 | f0bi 6746 | . . . 4 ⊢ (𝐹:∅⟶𝐵 ↔ 𝐹 = ∅) | |
| 4 | f10 6836 | . . . . 5 ⊢ ∅:∅–1-1→𝐵 | |
| 5 | f1eq1 6754 | . . . . 5 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐵 ↔ ∅:∅–1-1→𝐵)) | |
| 6 | 4, 5 | mpbiri 258 | . . . 4 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐵) |
| 7 | 3, 6 | sylbi 217 | . . 3 ⊢ (𝐹:∅⟶𝐵 → 𝐹:∅–1-1→𝐵) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅–1-1→𝐵) |
| 9 | f1eq2 6755 | . . 3 ⊢ (𝐴 = ∅ → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) | |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∅c0 4299 ⟶wf 6510 –1-1→wf1 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 |
| This theorem is referenced by: f1mo 48845 |
| Copyright terms: Public domain | W3C validator |