![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f102g | Structured version Visualization version GIF version |
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f102g | ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6729 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∅⟶𝐵)) | |
2 | 1 | biimpa 476 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅⟶𝐵) |
3 | f0bi 6804 | . . . 4 ⊢ (𝐹:∅⟶𝐵 ↔ 𝐹 = ∅) | |
4 | f10 6895 | . . . . 5 ⊢ ∅:∅–1-1→𝐵 | |
5 | f1eq1 6812 | . . . . 5 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐵 ↔ ∅:∅–1-1→𝐵)) | |
6 | 4, 5 | mpbiri 258 | . . . 4 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐵) |
7 | 3, 6 | sylbi 217 | . . 3 ⊢ (𝐹:∅⟶𝐵 → 𝐹:∅–1-1→𝐵) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅–1-1→𝐵) |
9 | f1eq2 6813 | . . 3 ⊢ (𝐴 = ∅ → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) | |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) |
11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∅c0 4352 ⟶wf 6569 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 |
This theorem is referenced by: f1mo 48566 |
Copyright terms: Public domain | W3C validator |