Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f102g | Structured version Visualization version GIF version |
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f102g | ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6633 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∅⟶𝐵)) | |
2 | 1 | biimpa 477 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅⟶𝐵) |
3 | f0bi 6708 | . . . 4 ⊢ (𝐹:∅⟶𝐵 ↔ 𝐹 = ∅) | |
4 | f10 6800 | . . . . 5 ⊢ ∅:∅–1-1→𝐵 | |
5 | f1eq1 6716 | . . . . 5 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐵 ↔ ∅:∅–1-1→𝐵)) | |
6 | 4, 5 | mpbiri 257 | . . . 4 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐵) |
7 | 3, 6 | sylbi 216 | . . 3 ⊢ (𝐹:∅⟶𝐵 → 𝐹:∅–1-1→𝐵) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅–1-1→𝐵) |
9 | f1eq2 6717 | . . 3 ⊢ (𝐴 = ∅ → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) | |
10 | 9 | adantr 481 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) |
11 | 8, 10 | mpbird 256 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∅c0 4269 ⟶wf 6475 –1-1→wf1 6476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 |
This theorem is referenced by: f1mo 46540 |
Copyright terms: Public domain | W3C validator |