Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f102g Structured version   Visualization version   GIF version

Theorem f102g 48840
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f102g ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)

Proof of Theorem f102g
StepHypRef Expression
1 feq2 6667 . . . 4 (𝐴 = ∅ → (𝐹:𝐴𝐵𝐹:∅⟶𝐵))
21biimpa 476 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:∅⟶𝐵)
3 f0bi 6743 . . . 4 (𝐹:∅⟶𝐵𝐹 = ∅)
4 f10 6833 . . . . 5 ∅:∅–1-1𝐵
5 f1eq1 6751 . . . . 5 (𝐹 = ∅ → (𝐹:∅–1-1𝐵 ↔ ∅:∅–1-1𝐵))
64, 5mpbiri 258 . . . 4 (𝐹 = ∅ → 𝐹:∅–1-1𝐵)
73, 6sylbi 217 . . 3 (𝐹:∅⟶𝐵𝐹:∅–1-1𝐵)
82, 7syl 17 . 2 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:∅–1-1𝐵)
9 f1eq2 6752 . . 3 (𝐴 = ∅ → (𝐹:𝐴1-1𝐵𝐹:∅–1-1𝐵))
109adantr 480 . 2 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → (𝐹:𝐴1-1𝐵𝐹:∅–1-1𝐵))
118, 10mpbird 257 1 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  c0 4296  wf 6507  1-1wf1 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516
This theorem is referenced by:  f1mo  48841
  Copyright terms: Public domain W3C validator