Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f102g Structured version   Visualization version   GIF version

Theorem f102g 48565
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f102g ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)

Proof of Theorem f102g
StepHypRef Expression
1 feq2 6729 . . . 4 (𝐴 = ∅ → (𝐹:𝐴𝐵𝐹:∅⟶𝐵))
21biimpa 476 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:∅⟶𝐵)
3 f0bi 6804 . . . 4 (𝐹:∅⟶𝐵𝐹 = ∅)
4 f10 6895 . . . . 5 ∅:∅–1-1𝐵
5 f1eq1 6812 . . . . 5 (𝐹 = ∅ → (𝐹:∅–1-1𝐵 ↔ ∅:∅–1-1𝐵))
64, 5mpbiri 258 . . . 4 (𝐹 = ∅ → 𝐹:∅–1-1𝐵)
73, 6sylbi 217 . . 3 (𝐹:∅⟶𝐵𝐹:∅–1-1𝐵)
82, 7syl 17 . 2 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:∅–1-1𝐵)
9 f1eq2 6813 . . 3 (𝐴 = ∅ → (𝐹:𝐴1-1𝐵𝐹:∅–1-1𝐵))
109adantr 480 . 2 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → (𝐹:𝐴1-1𝐵𝐹:∅–1-1𝐵))
118, 10mpbird 257 1 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  c0 4352  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578
This theorem is referenced by:  f1mo  48566
  Copyright terms: Public domain W3C validator