Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f102g Structured version   Visualization version   GIF version

Theorem f102g 46067
Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f102g ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)

Proof of Theorem f102g
StepHypRef Expression
1 feq2 6566 . . . 4 (𝐴 = ∅ → (𝐹:𝐴𝐵𝐹:∅⟶𝐵))
21biimpa 476 . . 3 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:∅⟶𝐵)
3 f0bi 6641 . . . 4 (𝐹:∅⟶𝐵𝐹 = ∅)
4 f10 6732 . . . . 5 ∅:∅–1-1𝐵
5 f1eq1 6649 . . . . 5 (𝐹 = ∅ → (𝐹:∅–1-1𝐵 ↔ ∅:∅–1-1𝐵))
64, 5mpbiri 257 . . . 4 (𝐹 = ∅ → 𝐹:∅–1-1𝐵)
73, 6sylbi 216 . . 3 (𝐹:∅⟶𝐵𝐹:∅–1-1𝐵)
82, 7syl 17 . 2 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:∅–1-1𝐵)
9 f1eq2 6650 . . 3 (𝐴 = ∅ → (𝐹:𝐴1-1𝐵𝐹:∅–1-1𝐵))
109adantr 480 . 2 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → (𝐹:𝐴1-1𝐵𝐹:∅–1-1𝐵))
118, 10mpbird 256 1 ((𝐴 = ∅ ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  c0 4253  wf 6414  1-1wf1 6415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423
This theorem is referenced by:  f1mo  46068
  Copyright terms: Public domain W3C validator