| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f102g | Structured version Visualization version GIF version | ||
| Description: A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f102g | ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6687 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:∅⟶𝐵)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅⟶𝐵) |
| 3 | f0bi 6761 | . . . 4 ⊢ (𝐹:∅⟶𝐵 ↔ 𝐹 = ∅) | |
| 4 | f10 6851 | . . . . 5 ⊢ ∅:∅–1-1→𝐵 | |
| 5 | f1eq1 6769 | . . . . 5 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐵 ↔ ∅:∅–1-1→𝐵)) | |
| 6 | 4, 5 | mpbiri 258 | . . . 4 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐵) |
| 7 | 3, 6 | sylbi 217 | . . 3 ⊢ (𝐹:∅⟶𝐵 → 𝐹:∅–1-1→𝐵) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:∅–1-1→𝐵) |
| 9 | f1eq2 6770 | . . 3 ⊢ (𝐴 = ∅ → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) | |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:∅–1-1→𝐵)) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∅c0 4308 ⟶wf 6527 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 |
| This theorem is referenced by: f1mo 48831 |
| Copyright terms: Public domain | W3C validator |