| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1sn2g | Structured version Visualization version GIF version | ||
| Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f1sn2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn2g 7071 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) | |
| 2 | 1 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 3 | 2 | simpld 494 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → (𝐹‘𝐴) ∈ 𝐵) |
| 4 | f1sng 6805 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ∈ 𝐵) → {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1→𝐵) | |
| 5 | 3, 4 | syldan 591 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1→𝐵) |
| 6 | f1eq1 6714 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹:{𝐴}–1-1→𝐵 ↔ {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1→𝐵)) | |
| 7 | 2, 6 | simpl2im 503 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → (𝐹:{𝐴}–1-1→𝐵 ↔ {〈𝐴, (𝐹‘𝐴)〉}:{𝐴}–1-1→𝐵)) |
| 8 | 5, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 ⟶wf 6477 –1-1→wf1 6478 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: f1mo 48892 |
| Copyright terms: Public domain | W3C validator |