Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1sn2g Structured version   Visualization version   GIF version

Theorem f1sn2g 48829
Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1sn2g ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)

Proof of Theorem f1sn2g
StepHypRef Expression
1 fsn2g 7128 . . . . 5 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
21biimpa 476 . . . 4 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
32simpld 494 . . 3 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹𝐴) ∈ 𝐵)
4 f1sng 6860 . . 3 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
53, 4syldan 591 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
6 f1eq1 6769 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
72, 6simpl2im 503 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
85, 7mpbird 257 1 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4601  cop 4607  wf 6527  1-1wf1 6528  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539
This theorem is referenced by:  f1mo  48831
  Copyright terms: Public domain W3C validator