Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1sn2g Structured version   Visualization version   GIF version

Theorem f1sn2g 48812
Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1sn2g ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)

Proof of Theorem f1sn2g
StepHypRef Expression
1 fsn2g 7092 . . . . 5 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
21biimpa 476 . . . 4 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
32simpld 494 . . 3 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹𝐴) ∈ 𝐵)
4 f1sng 6824 . . 3 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
53, 4syldan 591 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
6 f1eq1 6733 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
72, 6simpl2im 503 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
85, 7mpbird 257 1 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4585  cop 4591  wf 6495  1-1wf1 6496  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  f1mo  48814
  Copyright terms: Public domain W3C validator