Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1sn2g Structured version   Visualization version   GIF version

Theorem f1sn2g 48564
Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1sn2g ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)

Proof of Theorem f1sn2g
StepHypRef Expression
1 fsn2g 7172 . . . . 5 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
21biimpa 476 . . . 4 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
32simpld 494 . . 3 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹𝐴) ∈ 𝐵)
4 f1sng 6904 . . 3 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
53, 4syldan 590 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
6 f1eq1 6812 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
72, 6simpl2im 503 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
85, 7mpbird 257 1 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654  wf 6569  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  f1mo  48566
  Copyright terms: Public domain W3C validator