Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1sn2g Structured version   Visualization version   GIF version

Theorem f1sn2g 46066
Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.)
Assertion
Ref Expression
f1sn2g ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)

Proof of Theorem f1sn2g
StepHypRef Expression
1 fsn2g 6992 . . . . 5 (𝐴𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩})))
21biimpa 476 . . . 4 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → ((𝐹𝐴) ∈ 𝐵𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
32simpld 494 . . 3 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹𝐴) ∈ 𝐵)
4 f1sng 6741 . . 3 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
53, 4syldan 590 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵)
6 f1eq1 6649 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
72, 6simpl2im 503 . 2 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → (𝐹:{𝐴}–1-1𝐵 ↔ {⟨𝐴, (𝐹𝐴)⟩}:{𝐴}–1-1𝐵))
85, 7mpbird 256 1 ((𝐴𝑉𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558  cop 4564  wf 6414  1-1wf1 6415  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  f1mo  46068
  Copyright terms: Public domain W3C validator