MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10d Structured version   Visualization version   GIF version

Theorem f10d 6802
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.)
Hypothesis
Ref Expression
f10d.f (𝜑𝐹 = ∅)
Assertion
Ref Expression
f10d (𝜑𝐹:dom 𝐹1-1𝐴)

Proof of Theorem f10d
StepHypRef Expression
1 f10 6801 . . 3 ∅:∅–1-1𝐴
2 dm0 5864 . . . 4 dom ∅ = ∅
3 f1eq2 6720 . . . 4 (dom ∅ = ∅ → (∅:dom ∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
42, 3ax-mp 5 . . 3 (∅:dom ∅–1-1𝐴 ↔ ∅:∅–1-1𝐴)
51, 4mpbir 231 . 2 ∅:dom ∅–1-1𝐴
6 f10d.f . . 3 (𝜑𝐹 = ∅)
76dmeqd 5849 . . 3 (𝜑 → dom 𝐹 = dom ∅)
8 eqidd 2734 . . 3 (𝜑𝐴 = 𝐴)
96, 7, 8f1eq123d 6760 . 2 (𝜑 → (𝐹:dom 𝐹1-1𝐴 ↔ ∅:dom ∅–1-1𝐴))
105, 9mpbiri 258 1 (𝜑𝐹:dom 𝐹1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  c0 4282  dom cdm 5619  1-1wf1 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491
This theorem is referenced by:  umgr0e  29090  usgr0e  29216
  Copyright terms: Public domain W3C validator