MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10d Structured version   Visualization version   GIF version

Theorem f10d 6477
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.)
Hypothesis
Ref Expression
f10d.f (𝜑𝐹 = ∅)
Assertion
Ref Expression
f10d (𝜑𝐹:dom 𝐹1-1𝐴)

Proof of Theorem f10d
StepHypRef Expression
1 f10 6476 . . 3 ∅:∅–1-1𝐴
2 dm0 5637 . . . 4 dom ∅ = ∅
3 f1eq2 6400 . . . 4 (dom ∅ = ∅ → (∅:dom ∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
42, 3ax-mp 5 . . 3 (∅:dom ∅–1-1𝐴 ↔ ∅:∅–1-1𝐴)
51, 4mpbir 223 . 2 ∅:dom ∅–1-1𝐴
6 f10d.f . . 3 (𝜑𝐹 = ∅)
76dmeqd 5624 . . 3 (𝜑 → dom 𝐹 = dom ∅)
8 eqidd 2779 . . 3 (𝜑𝐴 = 𝐴)
96, 7, 8f1eq123d 6437 . 2 (𝜑 → (𝐹:dom 𝐹1-1𝐴 ↔ ∅:dom ∅–1-1𝐴))
105, 9mpbiri 250 1 (𝜑𝐹:dom 𝐹1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  c0 4178  dom cdm 5407  1-1wf1 6185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193
This theorem is referenced by:  umgr0e  26598  usgr0e  26721
  Copyright terms: Public domain W3C validator