| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f10d | Structured version Visualization version GIF version | ||
| Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
| Ref | Expression |
|---|---|
| f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 6801 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
| 2 | dm0 5864 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | f1eq2 6720 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
| 6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
| 7 | 6 | dmeqd 5849 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
| 8 | eqidd 2734 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 9 | 6, 7, 8 | f1eq123d 6760 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
| 10 | 5, 9 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∅c0 4282 dom cdm 5619 –1-1→wf1 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 |
| This theorem is referenced by: umgr0e 29090 usgr0e 29216 |
| Copyright terms: Public domain | W3C validator |