Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f10d | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
Ref | Expression |
---|---|
f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f10 6746 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
2 | dm0 5828 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | f1eq2 6664 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
5 | 1, 4 | mpbir 230 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
7 | 6 | dmeqd 5813 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
8 | eqidd 2741 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
9 | 6, 7, 8 | f1eq123d 6706 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
10 | 5, 9 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∅c0 4262 dom cdm 5590 –1-1→wf1 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 |
This theorem is referenced by: umgr0e 27478 usgr0e 27601 |
Copyright terms: Public domain | W3C validator |