![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f10d | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
Ref | Expression |
---|---|
f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f10 6882 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
2 | dm0 5934 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | f1eq2 6801 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
7 | 6 | dmeqd 5919 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
8 | eqidd 2736 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
9 | 6, 7, 8 | f1eq123d 6841 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
10 | 5, 9 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∅c0 4339 dom cdm 5689 –1-1→wf1 6560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 |
This theorem is referenced by: umgr0e 29142 usgr0e 29268 |
Copyright terms: Public domain | W3C validator |