| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f10d | Structured version Visualization version GIF version | ||
| Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
| Ref | Expression |
|---|---|
| f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 6856 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
| 2 | dm0 5905 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | f1eq2 6775 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
| 6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
| 7 | 6 | dmeqd 5890 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
| 8 | eqidd 2737 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 9 | 6, 7, 8 | f1eq123d 6815 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
| 10 | 5, 9 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∅c0 4313 dom cdm 5659 –1-1→wf1 6533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 |
| This theorem is referenced by: umgr0e 29094 usgr0e 29220 |
| Copyright terms: Public domain | W3C validator |