MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10d Structured version   Visualization version   GIF version

Theorem f10d 6881
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.)
Hypothesis
Ref Expression
f10d.f (𝜑𝐹 = ∅)
Assertion
Ref Expression
f10d (𝜑𝐹:dom 𝐹1-1𝐴)

Proof of Theorem f10d
StepHypRef Expression
1 f10 6880 . . 3 ∅:∅–1-1𝐴
2 dm0 5930 . . . 4 dom ∅ = ∅
3 f1eq2 6799 . . . 4 (dom ∅ = ∅ → (∅:dom ∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
42, 3ax-mp 5 . . 3 (∅:dom ∅–1-1𝐴 ↔ ∅:∅–1-1𝐴)
51, 4mpbir 231 . 2 ∅:dom ∅–1-1𝐴
6 f10d.f . . 3 (𝜑𝐹 = ∅)
76dmeqd 5915 . . 3 (𝜑 → dom 𝐹 = dom ∅)
8 eqidd 2737 . . 3 (𝜑𝐴 = 𝐴)
96, 7, 8f1eq123d 6839 . 2 (𝜑 → (𝐹:dom 𝐹1-1𝐴 ↔ ∅:dom ∅–1-1𝐴))
105, 9mpbiri 258 1 (𝜑𝐹:dom 𝐹1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  c0 4332  dom cdm 5684  1-1wf1 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565
This theorem is referenced by:  umgr0e  29128  usgr0e  29254
  Copyright terms: Public domain W3C validator