Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f10d | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
f10d.f | ⊢ (𝜑 → 𝐹 = ∅) |
Ref | Expression |
---|---|
f10d | ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f10 6732 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
2 | dm0 5818 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | f1eq2 6650 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴) |
5 | 1, 4 | mpbir 230 | . 2 ⊢ ∅:dom ∅–1-1→𝐴 |
6 | f10d.f | . . 3 ⊢ (𝜑 → 𝐹 = ∅) | |
7 | 6 | dmeqd 5803 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom ∅) |
8 | eqidd 2739 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐴) | |
9 | 6, 7, 8 | f1eq123d 6692 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→𝐴 ↔ ∅:dom ∅–1-1→𝐴)) |
10 | 5, 9 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∅c0 4253 dom cdm 5580 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 |
This theorem is referenced by: umgr0e 27383 usgr0e 27506 |
Copyright terms: Public domain | W3C validator |