| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr0e | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| usgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| usgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
| Ref | Expression |
|---|---|
| usgr0e | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
| 2 | 1 | f10d 6805 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 3 | usgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2733 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 4, 5 | isusgr 29142 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 8 | 2, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {crab 3397 ∖ cdif 3896 ∅c0 4284 𝒫 cpw 4551 {csn 4577 dom cdm 5621 –1-1→wf1 6486 ‘cfv 6489 2c2 12190 ♯chash 14247 Vtxcvtx 28985 iEdgciedg 28986 USGraphcusgr 29138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fv 6497 df-usgr 29140 |
| This theorem is referenced by: usgr0vb 29226 uhgr0vusgr 29231 usgr0eop 29235 edg0usgr 29242 usgr1v 29245 griedg0ssusgr 29254 cusgr1v 29420 frgr0v 30253 |
| Copyright terms: Public domain | W3C validator |