Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
usgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
usgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
usgr0e | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
2 | 1 | f10d 6664 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
3 | usgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | eqid 2739 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2739 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | 4, 5 | isusgr 27111 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
8 | 2, 7 | mpbird 260 | 1 ⊢ (𝜑 → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 {crab 3058 ∖ cdif 3850 ∅c0 4221 𝒫 cpw 4498 {csn 4526 dom cdm 5535 –1-1→wf1 6347 ‘cfv 6350 2c2 11784 ♯chash 13795 Vtxcvtx 26954 iEdgciedg 26955 USGraphcusgr 27107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fv 6358 df-usgr 27109 |
This theorem is referenced by: usgr0vb 27192 uhgr0vusgr 27197 usgr0eop 27201 edg0usgr 27208 usgr1v 27211 griedg0ssusgr 27220 cusgr1v 27386 frgr0v 28212 |
Copyright terms: Public domain | W3C validator |