MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0e Structured version   Visualization version   GIF version

Theorem usgr0e 27191
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
usgr0e.g (𝜑𝐺𝑊)
usgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
usgr0e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgr0e.e . . 3 (𝜑 → (iEdg‘𝐺) = ∅)
21f10d 6664 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
3 usgr0e.g . . 3 (𝜑𝐺𝑊)
4 eqid 2739 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2739 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5isusgr 27111 . . 3 (𝐺𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
73, 6syl 17 . 2 (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
82, 7mpbird 260 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1542  wcel 2114  {crab 3058  cdif 3850  c0 4221  𝒫 cpw 4498  {csn 4526  dom cdm 5535  1-1wf1 6347  cfv 6350  2c2 11784  chash 13795  Vtxcvtx 26954  iEdgciedg 26955  USGraphcusgr 27107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fv 6358  df-usgr 27109
This theorem is referenced by:  usgr0vb  27192  uhgr0vusgr  27197  usgr0eop  27201  edg0usgr  27208  usgr1v  27211  griedg0ssusgr  27220  cusgr1v  27386  frgr0v  28212
  Copyright terms: Public domain W3C validator