| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr0e | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| usgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| usgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
| Ref | Expression |
|---|---|
| usgr0e | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
| 2 | 1 | f10d 6793 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 3 | usgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 4, 5 | isusgr 29124 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 8 | 2, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {crab 3393 ∖ cdif 3897 ∅c0 4281 𝒫 cpw 4548 {csn 4574 dom cdm 5614 –1-1→wf1 6474 ‘cfv 6477 2c2 12172 ♯chash 14229 Vtxcvtx 28967 iEdgciedg 28968 USGraphcusgr 29120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fv 6485 df-usgr 29122 |
| This theorem is referenced by: usgr0vb 29208 uhgr0vusgr 29213 usgr0eop 29217 edg0usgr 29224 usgr1v 29227 griedg0ssusgr 29236 cusgr1v 29402 frgr0v 30232 |
| Copyright terms: Public domain | W3C validator |