MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0e Structured version   Visualization version   GIF version

Theorem usgr0e 29271
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
usgr0e.g (𝜑𝐺𝑊)
usgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
usgr0e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgr0e.e . . 3 (𝜑 → (iEdg‘𝐺) = ∅)
21f10d 6896 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
3 usgr0e.g . . 3 (𝜑𝐺𝑊)
4 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5isusgr 29188 . . 3 (𝐺𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
73, 6syl 17 . 2 (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
82, 7mpbird 257 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700  1-1wf1 6570  cfv 6573  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  USGraphcusgr 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-usgr 29186
This theorem is referenced by:  usgr0vb  29272  uhgr0vusgr  29277  usgr0eop  29281  edg0usgr  29288  usgr1v  29291  griedg0ssusgr  29300  cusgr1v  29466  frgr0v  30294
  Copyright terms: Public domain W3C validator