MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0e Structured version   Visualization version   GIF version

Theorem usgr0e 29163
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
usgr0e.g (𝜑𝐺𝑊)
usgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
usgr0e (𝜑𝐺 ∈ USGraph)

Proof of Theorem usgr0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgr0e.e . . 3 (𝜑 → (iEdg‘𝐺) = ∅)
21f10d 6834 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
3 usgr0e.g . . 3 (𝜑𝐺𝑊)
4 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5isusgr 29080 . . 3 (𝐺𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
73, 6syl 17 . 2 (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
82, 7mpbird 257 1 (𝜑𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3405  cdif 3911  c0 4296  𝒫 cpw 4563  {csn 4589  dom cdm 5638  1-1wf1 6508  cfv 6511  2c2 12241  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  USGraphcusgr 29076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519  df-usgr 29078
This theorem is referenced by:  usgr0vb  29164  uhgr0vusgr  29169  usgr0eop  29173  edg0usgr  29180  usgr1v  29183  griedg0ssusgr  29192  cusgr1v  29358  frgr0v  30191
  Copyright terms: Public domain W3C validator