| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr0e | Structured version Visualization version GIF version | ||
| Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| usgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| usgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
| Ref | Expression |
|---|---|
| usgr0e | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
| 2 | 1 | f10d 6816 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 3 | usgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 4, 5 | isusgr 29133 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 8 | 2, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 {csn 4585 dom cdm 5631 –1-1→wf1 6496 ‘cfv 6499 2c2 12217 ♯chash 14271 Vtxcvtx 28976 iEdgciedg 28977 USGraphcusgr 29129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fv 6507 df-usgr 29131 |
| This theorem is referenced by: usgr0vb 29217 uhgr0vusgr 29222 usgr0eop 29226 edg0usgr 29233 usgr1v 29236 griedg0ssusgr 29245 cusgr1v 29411 frgr0v 30241 |
| Copyright terms: Public domain | W3C validator |