![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) (Proof shortened by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
usgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
usgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
usgr0e | ⊢ (𝜑 → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr0e.e | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
2 | 1 | f10d 6521 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
3 | usgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | eqid 2795 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2795 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | 4, 5 | isusgr 26626 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
8 | 2, 7 | mpbird 258 | 1 ⊢ (𝜑 → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 {crab 3109 ∖ cdif 3860 ∅c0 4215 𝒫 cpw 4457 {csn 4476 dom cdm 5448 –1-1→wf1 6227 ‘cfv 6230 2c2 11545 ♯chash 13545 Vtxcvtx 26469 iEdgciedg 26470 USGraphcusgr 26622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-br 4967 df-opab 5029 df-id 5353 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fv 6238 df-usgr 26624 |
This theorem is referenced by: usgr0vb 26707 uhgr0vusgr 26712 usgr0eop 26716 edg0usgr 26723 usgr1v 26726 griedg0ssusgr 26735 cusgr1v 26901 frgr0v 27737 |
Copyright terms: Public domain | W3C validator |