Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
umgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
umgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
umgr0e | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr0e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
2 | 1 | f10d 6694 | . . 3 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
3 | f1f 6615 | . . 3 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
5 | umgr0e.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
6 | eqid 2737 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
7 | eqid 2737 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
8 | 6, 7 | isumgr 27186 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
10 | 4, 9 | mpbird 260 | 1 ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 {crab 3065 ∖ cdif 3863 ∅c0 4237 𝒫 cpw 4513 {csn 4541 dom cdm 5551 ⟶wf 6376 –1-1→wf1 6377 ‘cfv 6380 2c2 11885 ♯chash 13896 Vtxcvtx 27087 iEdgciedg 27088 UMGraphcumgr 27172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fv 6388 df-umgr 27174 |
This theorem is referenced by: upgr0e 27202 |
Copyright terms: Public domain | W3C validator |