MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr0e Structured version   Visualization version   GIF version

Theorem umgr0e 29090
Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgr0e.g (𝜑𝐺𝑊)
umgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
umgr0e (𝜑𝐺 ∈ UMGraph)

Proof of Theorem umgr0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr0e.e . . . 4 (𝜑 → (iEdg‘𝐺) = ∅)
21f10d 6802 . . 3 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
3 f1f 6724 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
42, 3syl 17 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
5 umgr0e.g . . 3 (𝜑𝐺𝑊)
6 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7isumgr 29075 . . 3 (𝐺𝑊 → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
95, 8syl 17 . 2 (𝜑 → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
104, 9mpbird 257 1 (𝜑𝐺 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  c0 4282  𝒫 cpw 4549  {csn 4575  dom cdm 5619  wf 6482  1-1wf1 6483  cfv 6486  2c2 12187  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  UMGraphcumgr 29061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494  df-umgr 29063
This theorem is referenced by:  upgr0e  29091
  Copyright terms: Public domain W3C validator