MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr0e Structured version   Visualization version   GIF version

Theorem umgr0e 29086
Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgr0e.g (𝜑𝐺𝑊)
umgr0e.e (𝜑 → (iEdg‘𝐺) = ∅)
Assertion
Ref Expression
umgr0e (𝜑𝐺 ∈ UMGraph)

Proof of Theorem umgr0e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgr0e.e . . . 4 (𝜑 → (iEdg‘𝐺) = ∅)
21f10d 6797 . . 3 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
3 f1f 6719 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
42, 3syl 17 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
5 umgr0e.g . . 3 (𝜑𝐺𝑊)
6 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
7 eqid 2731 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7isumgr 29071 . . 3 (𝐺𝑊 → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
95, 8syl 17 . 2 (𝜑 → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
104, 9mpbird 257 1 (𝜑𝐺 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {crab 3395  cdif 3899  c0 4283  𝒫 cpw 4550  {csn 4576  dom cdm 5616  wf 6477  1-1wf1 6478  cfv 6481  2c2 12177  chash 14234  Vtxcvtx 28972  iEdgciedg 28973  UMGraphcumgr 29057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-umgr 29059
This theorem is referenced by:  upgr0e  29087
  Copyright terms: Public domain W3C validator