MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv1 Structured version   Visualization version   GIF version

Theorem f1cocnv1 6854
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv1 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))

Proof of Theorem f1cocnv1
StepHypRef Expression
1 f1f1orn 6835 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
2 f1ococnv1 6853 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐹𝐹) = ( I ↾ 𝐴))
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533   I cid 5564  ccnv 5666  ran crn 5668  cres 5669  ccom 5671  1-1wf1 6531  1-1-ontowf1o 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541
This theorem is referenced by:  f1eqcocnv  7292  f1eqcocnvOLD  7293  domss2  9133  diophrw  42011
  Copyright terms: Public domain W3C validator