MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv1 Structured version   Visualization version   GIF version

Theorem f1cocnv1 6860
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv1 (𝐹:𝐴–1-1→𝐡 β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ 𝐴))

Proof of Theorem f1cocnv1
StepHypRef Expression
1 f1f1orn 6841 . 2 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
2 f1ococnv1 6859 . 2 (𝐹:𝐴–1-1-ontoβ†’ran 𝐹 β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ 𝐴))
31, 2syl 17 1 (𝐹:𝐴–1-1→𝐡 β†’ (◑𝐹 ∘ 𝐹) = ( I β†Ύ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   I cid 5572  β—‘ccnv 5674  ran crn 5676   β†Ύ cres 5677   ∘ ccom 5679  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547
This theorem is referenced by:  f1eqcocnv  7295  f1eqcocnvOLD  7296  domss2  9132  diophrw  41482
  Copyright terms: Public domain W3C validator