MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cocnv1 Structured version   Visualization version   GIF version

Theorem f1cocnv1 6830
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cocnv1 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))

Proof of Theorem f1cocnv1
StepHypRef Expression
1 f1f1orn 6811 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
2 f1ococnv1 6829 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐹𝐹) = ( I ↾ 𝐴))
31, 2syl 17 1 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   I cid 5532  ccnv 5637  ran crn 5639  cres 5640  ccom 5642  1-1wf1 6508  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  f1eqcocnv  7276  domss2  9100  1arithidomlem2  33507  diophrw  42747
  Copyright terms: Public domain W3C validator