Proof of Theorem domss2
Step | Hyp | Ref
| Expression |
1 | | f1f1orn 6727 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
2 | 1 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹:𝐴–1-1-onto→ran
𝐹) |
3 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) |
4 | | rnexg 7751 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran 𝐴 ∈ V) |
6 | | uniexg 7593 |
. . . . . . . . 9
⊢ (ran
𝐴 ∈ V → ∪ ran 𝐴 ∈ V) |
7 | | pwexg 5301 |
. . . . . . . . 9
⊢ (∪ ran 𝐴 ∈ V → 𝒫 ∪ ran 𝐴 ∈ V) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 ∪ ran 𝐴 ∈ V) |
9 | | 1stconst 7940 |
. . . . . . . 8
⊢
(𝒫 ∪ ran 𝐴 ∈ V → (1st ↾
((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹)) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹)) |
11 | | difexg 5251 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∖ ran 𝐹) ∈ V) |
12 | 11 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∖ ran 𝐹) ∈ V) |
13 | | disjen 8921 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∖ ran 𝐹) ∈ V) → ((𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) = ∅ ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}) ≈ (𝐵 ∖ ran 𝐹))) |
14 | 3, 12, 13 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) = ∅ ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}) ≈ (𝐵 ∖ ran 𝐹))) |
15 | 14 | simpld 495 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) = ∅) |
16 | | disjdif 4405 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ (𝐵 ∖ ran 𝐹)) = ∅ |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹)) = ∅) |
18 | | f1oun 6735 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→ran
𝐹 ∧ (1st
↾ ((𝐵 ∖ ran
𝐹) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹)) ∧ ((𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹)) = ∅)) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))–1-1-onto→(ran
𝐹 ∪ (𝐵 ∖ ran 𝐹))) |
19 | 2, 10, 15, 17, 18 | syl22anc 836 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))–1-1-onto→(ran
𝐹 ∪ (𝐵 ∖ ran 𝐹))) |
20 | | undif2 4410 |
. . . . . . . 8
⊢ (ran
𝐹 ∪ (𝐵 ∖ ran 𝐹)) = (ran 𝐹 ∪ 𝐵) |
21 | | f1f 6670 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
22 | 21 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹:𝐴⟶𝐵) |
23 | 22 | frnd 6608 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran 𝐹 ⊆ 𝐵) |
24 | | ssequn1 4114 |
. . . . . . . . 9
⊢ (ran
𝐹 ⊆ 𝐵 ↔ (ran 𝐹 ∪ 𝐵) = 𝐵) |
25 | 23, 24 | sylib 217 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran 𝐹 ∪ 𝐵) = 𝐵) |
26 | 20, 25 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran 𝐹 ∪ (𝐵 ∖ ran 𝐹)) = 𝐵) |
27 | 26 | f1oeq3d 6713 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))–1-1-onto→(ran
𝐹 ∪ (𝐵 ∖ ran 𝐹)) ↔ (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))–1-1-onto→𝐵)) |
28 | 19, 27 | mpbid 231 |
. . . . 5
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))–1-1-onto→𝐵) |
29 | | f1ocnv 6728 |
. . . . 5
⊢ ((𝐹 ∪ (1st ↾
((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))–1-1-onto→𝐵 → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
30 | 28, 29 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
31 | | domss2.1 |
. . . . 5
⊢ 𝐺 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
32 | | f1oeq1 6704 |
. . . . 5
⊢ (𝐺 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) → (𝐺:𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↔ ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})))) |
33 | 31, 32 | ax-mp 5 |
. . . 4
⊢ (𝐺:𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↔ ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
34 | 30, 33 | sylibr 233 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐺:𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
35 | | f1ofo 6723 |
. . . . 5
⊢ (𝐺:𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) → 𝐺:𝐵–onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
36 | | forn 6691 |
. . . . 5
⊢ (𝐺:𝐵–onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) → ran 𝐺 = (𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
37 | 34, 35, 36 | 3syl 18 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran 𝐺 = (𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
38 | 37 | f1oeq3d 6713 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺:𝐵–1-1-onto→ran
𝐺 ↔ 𝐺:𝐵–1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})))) |
39 | 34, 38 | mpbird 256 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐺:𝐵–1-1-onto→ran
𝐺) |
40 | | ssun1 4106 |
. . 3
⊢ 𝐴 ⊆ (𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) |
41 | 40, 37 | sseqtrrid 3974 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ⊆ ran 𝐺) |
42 | | ssid 3943 |
. . . 4
⊢ ran 𝐹 ⊆ ran 𝐹 |
43 | | cores 6153 |
. . . 4
⊢ (ran
𝐹 ⊆ ran 𝐹 → ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = (𝐺 ∘ 𝐹)) |
44 | 42, 43 | ax-mp 5 |
. . 3
⊢ ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = (𝐺 ∘ 𝐹) |
45 | | dmres 5913 |
. . . . . . . . 9
⊢ dom
(◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = (ran 𝐹 ∩ dom ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
46 | | f1ocnv 6728 |
. . . . . . . . . . . 12
⊢
((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹) → ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):(𝐵 ∖ ran 𝐹)–1-1-onto→((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) |
47 | | f1odm 6720 |
. . . . . . . . . . . 12
⊢ (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):(𝐵 ∖ ran 𝐹)–1-1-onto→((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}) → dom ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) = (𝐵 ∖ ran 𝐹)) |
48 | 10, 46, 47 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) = (𝐵 ∖ ran 𝐹)) |
49 | 48 | ineq2d 4146 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran 𝐹 ∩ dom ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) = (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹))) |
50 | 49, 16 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran 𝐹 ∩ dom ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) = ∅) |
51 | 45, 50 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → dom (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = ∅) |
52 | | relres 5920 |
. . . . . . . . 9
⊢ Rel
(◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) |
53 | | reldm0 5837 |
. . . . . . . . 9
⊢ (Rel
(◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) → ((◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = ∅ ↔ dom (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = ∅)) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . 8
⊢ ((◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = ∅ ↔ dom (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = ∅) |
55 | 51, 54 | sylibr 233 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹) = ∅) |
56 | 55 | uneq2d 4097 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡𝐹 ∪ (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹)) = (◡𝐹 ∪ ∅)) |
57 | | cnvun 6046 |
. . . . . . . . 9
⊢ ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) = (◡𝐹 ∪ ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
58 | 31, 57 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐺 = (◡𝐹 ∪ ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
59 | 58 | reseq1i 5887 |
. . . . . . 7
⊢ (𝐺 ↾ ran 𝐹) = ((◡𝐹 ∪ ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ↾ ran 𝐹) |
60 | | resundir 5906 |
. . . . . . 7
⊢ ((◡𝐹 ∪ ◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ↾ ran 𝐹) = ((◡𝐹 ↾ ran 𝐹) ∪ (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹)) |
61 | | df-rn 5600 |
. . . . . . . . . 10
⊢ ran 𝐹 = dom ◡𝐹 |
62 | 61 | reseq2i 5888 |
. . . . . . . . 9
⊢ (◡𝐹 ↾ ran 𝐹) = (◡𝐹 ↾ dom ◡𝐹) |
63 | | relcnv 6012 |
. . . . . . . . . 10
⊢ Rel ◡𝐹 |
64 | | resdm 5936 |
. . . . . . . . . 10
⊢ (Rel
◡𝐹 → (◡𝐹 ↾ dom ◡𝐹) = ◡𝐹) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . 9
⊢ (◡𝐹 ↾ dom ◡𝐹) = ◡𝐹 |
66 | 62, 65 | eqtri 2766 |
. . . . . . . 8
⊢ (◡𝐹 ↾ ran 𝐹) = ◡𝐹 |
67 | 66 | uneq1i 4093 |
. . . . . . 7
⊢ ((◡𝐹 ↾ ran 𝐹) ∪ (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹)) = (◡𝐹 ∪ (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹)) |
68 | 59, 60, 67 | 3eqtrri 2771 |
. . . . . 6
⊢ (◡𝐹 ∪ (◡(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ↾ ran 𝐹)) = (𝐺 ↾ ran 𝐹) |
69 | | un0 4324 |
. . . . . 6
⊢ (◡𝐹 ∪ ∅) = ◡𝐹 |
70 | 56, 68, 69 | 3eqtr3g 2801 |
. . . . 5
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺 ↾ ran 𝐹) = ◡𝐹) |
71 | 70 | coeq1d 5770 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = (◡𝐹 ∘ 𝐹)) |
72 | | f1cocnv1 6746 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
73 | 72 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
74 | 71, 73 | eqtrd 2778 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = ( I ↾ 𝐴)) |
75 | 44, 74 | eqtr3id 2792 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
76 | 39, 41, 75 | 3jca 1127 |
1
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺:𝐵–1-1-onto→ran
𝐺 ∧ 𝐴 ⊆ ran 𝐺 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) |