MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domss2 Structured version   Visualization version   GIF version

Theorem domss2 9155
Description: A corollary of disjenex 9154. If 𝐹 is an injection from 𝐴 to 𝐵 then 𝐺 is a right inverse of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
domss2.1 𝐺 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
Assertion
Ref Expression
domss2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐺:𝐵1-1-onto→ran 𝐺𝐴 ⊆ ran 𝐺 ∧ (𝐺𝐹) = ( I ↾ 𝐴)))

Proof of Theorem domss2
StepHypRef Expression
1 f1f1orn 6834 . . . . . . . 8 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
213ad2ant1 1133 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹:𝐴1-1-onto→ran 𝐹)
3 simp2 1137 . . . . . . . . . 10 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐴𝑉)
4 rnexg 7903 . . . . . . . . . 10 (𝐴𝑉 → ran 𝐴 ∈ V)
53, 4syl 17 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ran 𝐴 ∈ V)
6 uniexg 7739 . . . . . . . . 9 (ran 𝐴 ∈ V → ran 𝐴 ∈ V)
7 pwexg 5353 . . . . . . . . 9 ( ran 𝐴 ∈ V → 𝒫 ran 𝐴 ∈ V)
85, 6, 73syl 18 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝒫 ran 𝐴 ∈ V)
9 1stconst 8104 . . . . . . . 8 (𝒫 ran 𝐴 ∈ V → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹))
108, 9syl 17 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹))
11 difexg 5304 . . . . . . . . . 10 (𝐵𝑊 → (𝐵 ∖ ran 𝐹) ∈ V)
12113ad2ant3 1135 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐵 ∖ ran 𝐹) ∈ V)
13 disjen 9153 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∖ ran 𝐹) ∈ V) → ((𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) = ∅ ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ≈ (𝐵 ∖ ran 𝐹)))
143, 12, 13syl2anc 584 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) = ∅ ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ≈ (𝐵 ∖ ran 𝐹)))
1514simpld 494 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) = ∅)
16 disjdif 4452 . . . . . . . 8 (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹)) = ∅
1716a1i 11 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹)) = ∅)
18 f1oun 6842 . . . . . . 7 (((𝐹:𝐴1-1-onto→ran 𝐹 ∧ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹)) ∧ ((𝐴 ∩ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) = ∅ ∧ (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹)) = ∅)) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))–1-1-onto→(ran 𝐹 ∪ (𝐵 ∖ ran 𝐹)))
192, 10, 15, 17, 18syl22anc 838 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))–1-1-onto→(ran 𝐹 ∪ (𝐵 ∖ ran 𝐹)))
20 undif2 4457 . . . . . . . 8 (ran 𝐹 ∪ (𝐵 ∖ ran 𝐹)) = (ran 𝐹𝐵)
21 f1f 6779 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
22213ad2ant1 1133 . . . . . . . . . 10 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹:𝐴𝐵)
2322frnd 6719 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ran 𝐹𝐵)
24 ssequn1 4166 . . . . . . . . 9 (ran 𝐹𝐵 ↔ (ran 𝐹𝐵) = 𝐵)
2523, 24sylib 218 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (ran 𝐹𝐵) = 𝐵)
2620, 25eqtrid 2783 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (ran 𝐹 ∪ (𝐵 ∖ ran 𝐹)) = 𝐵)
2726f1oeq3d 6820 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))–1-1-onto→(ran 𝐹 ∪ (𝐵 ∖ ran 𝐹)) ↔ (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))–1-1-onto𝐵))
2819, 27mpbid 232 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))–1-1-onto𝐵)
29 f1ocnv 6835 . . . . 5 ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))–1-1-onto𝐵(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
3028, 29syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
31 domss2.1 . . . . 5 𝐺 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
32 f1oeq1 6811 . . . . 5 (𝐺 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝐺:𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↔ (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
3331, 32ax-mp 5 . . . 4 (𝐺:𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↔ (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
3430, 33sylibr 234 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐺:𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
35 f1ofo 6830 . . . . 5 (𝐺:𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) → 𝐺:𝐵onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
36 forn 6798 . . . . 5 (𝐺:𝐵onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) → ran 𝐺 = (𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
3734, 35, 363syl 18 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ran 𝐺 = (𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
3837f1oeq3d 6820 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐺:𝐵1-1-onto→ran 𝐺𝐺:𝐵1-1-onto→(𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
3934, 38mpbird 257 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐺:𝐵1-1-onto→ran 𝐺)
40 ssun1 4158 . . 3 𝐴 ⊆ (𝐴 ∪ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))
4140, 37sseqtrrid 4007 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐴 ⊆ ran 𝐺)
42 ssid 3986 . . . 4 ran 𝐹 ⊆ ran 𝐹
43 cores 6243 . . . 4 (ran 𝐹 ⊆ ran 𝐹 → ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = (𝐺𝐹))
4442, 43ax-mp 5 . . 3 ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = (𝐺𝐹)
45 dmres 6004 . . . . . . . . 9 dom ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = (ran 𝐹 ∩ dom (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
46 f1ocnv 6835 . . . . . . . . . . . 12 ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})–1-1-onto→(𝐵 ∖ ran 𝐹) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):(𝐵 ∖ ran 𝐹)–1-1-onto→((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))
47 f1odm 6827 . . . . . . . . . . . 12 ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):(𝐵 ∖ ran 𝐹)–1-1-onto→((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) → dom (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) = (𝐵 ∖ ran 𝐹))
4810, 46, 473syl 18 . . . . . . . . . . 11 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → dom (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) = (𝐵 ∖ ran 𝐹))
4948ineq2d 4200 . . . . . . . . . 10 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (ran 𝐹 ∩ dom (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) = (ran 𝐹 ∩ (𝐵 ∖ ran 𝐹)))
5049, 16eqtrdi 2787 . . . . . . . . 9 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (ran 𝐹 ∩ dom (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) = ∅)
5145, 50eqtrid 2783 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → dom ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = ∅)
52 relres 5997 . . . . . . . . 9 Rel ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹)
53 reldm0 5912 . . . . . . . . 9 (Rel ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) → (((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = ∅ ↔ dom ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = ∅))
5452, 53ax-mp 5 . . . . . . . 8 (((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = ∅ ↔ dom ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = ∅)
5551, 54sylibr 234 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹) = ∅)
5655uneq2d 4148 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹)) = (𝐹 ∪ ∅))
57 cnvun 6136 . . . . . . . . 9 (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) = (𝐹(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
5831, 57eqtri 2759 . . . . . . . 8 𝐺 = (𝐹(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
5958reseq1i 5967 . . . . . . 7 (𝐺 ↾ ran 𝐹) = ((𝐹(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ↾ ran 𝐹)
60 resundir 5986 . . . . . . 7 ((𝐹(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ↾ ran 𝐹) = ((𝐹 ↾ ran 𝐹) ∪ ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹))
61 df-rn 5670 . . . . . . . . . 10 ran 𝐹 = dom 𝐹
6261reseq2i 5968 . . . . . . . . 9 (𝐹 ↾ ran 𝐹) = (𝐹 ↾ dom 𝐹)
63 relcnv 6096 . . . . . . . . . 10 Rel 𝐹
64 resdm 6018 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
6563, 64ax-mp 5 . . . . . . . . 9 (𝐹 ↾ dom 𝐹) = 𝐹
6662, 65eqtri 2759 . . . . . . . 8 (𝐹 ↾ ran 𝐹) = 𝐹
6766uneq1i 4144 . . . . . . 7 ((𝐹 ↾ ran 𝐹) ∪ ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹)) = (𝐹 ∪ ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹))
6859, 60, 673eqtrri 2764 . . . . . 6 (𝐹 ∪ ((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ↾ ran 𝐹)) = (𝐺 ↾ ran 𝐹)
69 un0 4374 . . . . . 6 (𝐹 ∪ ∅) = 𝐹
7056, 68, 693eqtr3g 2794 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐺 ↾ ran 𝐹) = 𝐹)
7170coeq1d 5846 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = (𝐹𝐹))
72 f1cocnv1 6853 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
73723ad2ant1 1133 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹𝐹) = ( I ↾ 𝐴))
7471, 73eqtrd 2771 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐺 ↾ ran 𝐹) ∘ 𝐹) = ( I ↾ 𝐴))
7544, 74eqtr3id 2785 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐺𝐹) = ( I ↾ 𝐴))
7639, 41, 753jca 1128 1 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐺:𝐵1-1-onto→ran 𝐺𝐴 ⊆ ran 𝐺 ∧ (𝐺𝐹) = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888   class class class wbr 5124   I cid 5552   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663  Rel wrel 5664  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  1st c1st 7991  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1st 7993  df-2nd 7994  df-en 8965
This theorem is referenced by:  domssex2  9156  domssex  9157
  Copyright terms: Public domain W3C validator