| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcoeqres | Structured version Visualization version GIF version | ||
| Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| funcoeqres | ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcocnv2 6848 | . . . 4 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
| 2 | 1 | coeq2d 5847 | . . 3 ⊢ (Fun 𝐺 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
| 3 | coass 6259 | . . . 4 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
| 4 | 3 | eqcomi 2745 | . . 3 ⊢ (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = ((𝐹 ∘ 𝐺) ∘ ◡𝐺) |
| 5 | coires1 6258 | . . 3 ⊢ (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺) | |
| 6 | 2, 4, 5 | 3eqtr3g 2794 | . 2 ⊢ (Fun 𝐺 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
| 7 | coeq1 5842 | . 2 ⊢ ((𝐹 ∘ 𝐺) = 𝐻 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐻 ∘ ◡𝐺)) | |
| 8 | 6, 7 | sylan9req 2792 | 1 ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 I cid 5552 ◡ccnv 5658 ran crn 5660 ↾ cres 5661 ∘ ccom 5663 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-fun 6538 |
| This theorem is referenced by: frlmup4 21766 evlseu 22046 |
| Copyright terms: Public domain | W3C validator |