![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcoeqres | Structured version Visualization version GIF version |
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
funcoeqres | ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcocnv2 6887 | . . . 4 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
2 | 1 | coeq2d 5887 | . . 3 ⊢ (Fun 𝐺 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
3 | coass 6296 | . . . 4 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
4 | 3 | eqcomi 2749 | . . 3 ⊢ (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = ((𝐹 ∘ 𝐺) ∘ ◡𝐺) |
5 | coires1 6295 | . . 3 ⊢ (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺) | |
6 | 2, 4, 5 | 3eqtr3g 2803 | . 2 ⊢ (Fun 𝐺 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
7 | coeq1 5882 | . 2 ⊢ ((𝐹 ∘ 𝐺) = 𝐻 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐻 ∘ ◡𝐺)) | |
8 | 6, 7 | sylan9req 2801 | 1 ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 I cid 5592 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-fun 6575 |
This theorem is referenced by: frlmup4 21844 evlseu 22130 |
Copyright terms: Public domain | W3C validator |