![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcoeqres | Structured version Visualization version GIF version |
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
funcoeqres | ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcocnv2 6859 | . . . 4 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
2 | 1 | coeq2d 5863 | . . 3 ⊢ (Fun 𝐺 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
3 | coass 6265 | . . . 4 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
4 | 3 | eqcomi 2742 | . . 3 ⊢ (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = ((𝐹 ∘ 𝐺) ∘ ◡𝐺) |
5 | coires1 6264 | . . 3 ⊢ (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺) | |
6 | 2, 4, 5 | 3eqtr3g 2796 | . 2 ⊢ (Fun 𝐺 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
7 | coeq1 5858 | . 2 ⊢ ((𝐹 ∘ 𝐺) = 𝐻 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐻 ∘ ◡𝐺)) | |
8 | 6, 7 | sylan9req 2794 | 1 ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 I cid 5574 ◡ccnv 5676 ran crn 5678 ↾ cres 5679 ∘ ccom 5681 Fun wfun 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-fun 6546 |
This theorem is referenced by: frlmup4 21356 evlseu 21646 |
Copyright terms: Public domain | W3C validator |