MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoeqres Structured version   Visualization version   GIF version

Theorem funcoeqres 6696
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 6690 . . . 4 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
21coeq2d 5736 . . 3 (Fun 𝐺 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
3 coass 6134 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
43eqcomi 2746 . . 3 (𝐹 ∘ (𝐺𝐺)) = ((𝐹𝐺) ∘ 𝐺)
5 coires1 6133 . . 3 (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)
62, 4, 53eqtr3g 2801 . 2 (Fun 𝐺 → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
7 coeq1 5731 . 2 ((𝐹𝐺) = 𝐻 → ((𝐹𝐺) ∘ 𝐺) = (𝐻𝐺))
86, 7sylan9req 2799 1 ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543   I cid 5459  ccnv 5555  ran crn 5557  cres 5558  ccom 5560  Fun wfun 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pr 5327
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3415  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-sn 4547  df-pr 4549  df-op 4553  df-br 5059  df-opab 5121  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-fun 6387
This theorem is referenced by:  frlmup4  20768  evlseu  21048
  Copyright terms: Public domain W3C validator