MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoeqres Structured version   Visualization version   GIF version

Theorem funcoeqres 6893
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 6887 . . . 4 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
21coeq2d 5887 . . 3 (Fun 𝐺 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
3 coass 6296 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
43eqcomi 2749 . . 3 (𝐹 ∘ (𝐺𝐺)) = ((𝐹𝐺) ∘ 𝐺)
5 coires1 6295 . . 3 (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)
62, 4, 53eqtr3g 2803 . 2 (Fun 𝐺 → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
7 coeq1 5882 . 2 ((𝐹𝐺) = 𝐻 → ((𝐹𝐺) ∘ 𝐺) = (𝐻𝐺))
86, 7sylan9req 2801 1 ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537   I cid 5592  ccnv 5699  ran crn 5701  cres 5702  ccom 5704  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6575
This theorem is referenced by:  frlmup4  21844  evlseu  22130
  Copyright terms: Public domain W3C validator