| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcoeqres | Structured version Visualization version GIF version | ||
| Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| funcoeqres | ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcocnv2 6872 | . . . 4 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
| 2 | 1 | coeq2d 5872 | . . 3 ⊢ (Fun 𝐺 → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
| 3 | coass 6284 | . . . 4 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
| 4 | 3 | eqcomi 2745 | . . 3 ⊢ (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = ((𝐹 ∘ 𝐺) ∘ ◡𝐺) |
| 5 | coires1 6283 | . . 3 ⊢ (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺) | |
| 6 | 2, 4, 5 | 3eqtr3g 2799 | . 2 ⊢ (Fun 𝐺 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
| 7 | coeq1 5867 | . 2 ⊢ ((𝐹 ∘ 𝐺) = 𝐻 → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐻 ∘ ◡𝐺)) | |
| 8 | 6, 7 | sylan9req 2797 | 1 ⊢ ((Fun 𝐺 ∧ (𝐹 ∘ 𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻 ∘ ◡𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 I cid 5576 ◡ccnv 5683 ran crn 5685 ↾ cres 5686 ∘ ccom 5688 Fun wfun 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-fun 6562 |
| This theorem is referenced by: frlmup4 21822 evlseu 22108 |
| Copyright terms: Public domain | W3C validator |