MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcoeqres Structured version   Visualization version   GIF version

Theorem funcoeqres 6386
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 6380 . . . 4 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
21coeq2d 5488 . . 3 (Fun 𝐺 → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
3 coass 5873 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
43eqcomi 2808 . . 3 (𝐹 ∘ (𝐺𝐺)) = ((𝐹𝐺) ∘ 𝐺)
5 coires1 5872 . . 3 (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)
62, 4, 53eqtr3g 2856 . 2 (Fun 𝐺 → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
7 coeq1 5483 . 2 ((𝐹𝐺) = 𝐻 → ((𝐹𝐺) ∘ 𝐺) = (𝐻𝐺))
86, 7sylan9req 2854 1 ((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653   I cid 5219  ccnv 5311  ran crn 5313  cres 5314  ccom 5316  Fun wfun 6095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-fun 6103
This theorem is referenced by:  evlseu  19838  frlmup4  20465
  Copyright terms: Public domain W3C validator