MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1sng Structured version   Visualization version   GIF version

Theorem f1sng 6865
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
Assertion
Ref Expression
f1sng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)

Proof of Theorem f1sng
StepHypRef Expression
1 f1osng 6864 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
2 f1of1 6822 . . 3 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵})
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵})
4 snssi 4789 . . 3 (𝐵𝑊 → {𝐵} ⊆ 𝑊)
54adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → {𝐵} ⊆ 𝑊)
6 f1ss 6784 . 2 (({⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
73, 5, 6syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3931  {csn 4606  cop 4612  1-1wf1 6533  1-1-ontowf1o 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  fsnd  6866  uspgr1e  29228  0wlkons1  30107  f1sn2g  48796
  Copyright terms: Public domain W3C validator