MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1sng Structured version   Visualization version   GIF version

Theorem f1sng 6741
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
Assertion
Ref Expression
f1sng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)

Proof of Theorem f1sng
StepHypRef Expression
1 f1osng 6740 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
2 f1of1 6699 . . 3 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵})
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵})
4 snssi 4738 . . 3 (𝐵𝑊 → {𝐵} ⊆ 𝑊)
54adantl 481 . 2 ((𝐴𝑉𝐵𝑊) → {𝐵} ⊆ 𝑊)
6 f1ss 6660 . 2 (({⟨𝐴, 𝐵⟩}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
73, 5, 6syl2anc 583 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3883  {csn 4558  cop 4564  1-1wf1 6415  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425
This theorem is referenced by:  fsnd  6742  uspgr1e  27514  0wlkons1  28386  f1sn2g  46066
  Copyright terms: Public domain W3C validator