Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1sng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
f1sng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osng 6740 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
2 | f1of1 6699 | . . 3 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → {〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵}) |
4 | snssi 4738 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ⊆ 𝑊) | |
5 | 4 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐵} ⊆ 𝑊) |
6 | f1ss 6660 | . 2 ⊢ (({〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
7 | 3, 5, 6 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 〈cop 4564 –1-1→wf1 6415 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: fsnd 6742 uspgr1e 27514 0wlkons1 28386 f1sn2g 46066 |
Copyright terms: Public domain | W3C validator |