| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1sng | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| f1sng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osng 6805 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | |
| 2 | f1of1 6763 | . . 3 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} → {〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵}) |
| 4 | snssi 4759 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ⊆ 𝑊) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐵} ⊆ 𝑊) |
| 6 | f1ss 6725 | . 2 ⊢ (({〈𝐴, 𝐵〉}:{𝐴}–1-1→{𝐵} ∧ {𝐵} ⊆ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
| 7 | 3, 5, 6 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 {csn 4577 〈cop 4583 –1-1→wf1 6479 –1-1-onto→wf1o 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: fsnd 6807 uspgr1e 29189 0wlkons1 30065 f1sn2g 48835 |
| Copyright terms: Public domain | W3C validator |