Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0wlkons1 | Structured version Visualization version GIF version |
Description: A walk of length 0 from a vertex to itself. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0wlkons1 | ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(WalksOn‘𝐺)𝑁)〈“𝑁”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14303 | . . 3 ⊢ (𝑁 ∈ 𝑉 → 〈“𝑁”〉 = {〈0, 𝑁〉}) | |
2 | 0z 12330 | . . . . . 6 ⊢ 0 ∈ ℤ | |
3 | 2 | jctl 524 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (0 ∈ ℤ ∧ 𝑁 ∈ 𝑉)) |
4 | f1sng 6758 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → {〈0, 𝑁〉}:{0}–1-1→𝑉) | |
5 | f1f 6670 | . . . . 5 ⊢ ({〈0, 𝑁〉}:{0}–1-1→𝑉 → {〈0, 𝑁〉}:{0}⟶𝑉) | |
6 | 3, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:{0}⟶𝑉) |
7 | id 22 | . . . . 5 ⊢ (〈“𝑁”〉 = {〈0, 𝑁〉} → 〈“𝑁”〉 = {〈0, 𝑁〉}) | |
8 | fzsn 13298 | . . . . . 6 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
9 | 2, 8 | mp1i 13 | . . . . 5 ⊢ (〈“𝑁”〉 = {〈0, 𝑁〉} → (0...0) = {0}) |
10 | 7, 9 | feq12d 6588 | . . . 4 ⊢ (〈“𝑁”〉 = {〈0, 𝑁〉} → (〈“𝑁”〉:(0...0)⟶𝑉 ↔ {〈0, 𝑁〉}:{0}⟶𝑉)) |
11 | 6, 10 | syl5ibrcom 246 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (〈“𝑁”〉 = {〈0, 𝑁〉} → 〈“𝑁”〉:(0...0)⟶𝑉)) |
12 | 1, 11 | mpd 15 | . 2 ⊢ (𝑁 ∈ 𝑉 → 〈“𝑁”〉:(0...0)⟶𝑉) |
13 | s1fv 14315 | . 2 ⊢ (𝑁 ∈ 𝑉 → (〈“𝑁”〉‘0) = 𝑁) | |
14 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | 14 | 0wlkon 28484 | . 2 ⊢ ((〈“𝑁”〉:(0...0)⟶𝑉 ∧ (〈“𝑁”〉‘0) = 𝑁) → ∅(𝑁(WalksOn‘𝐺)𝑁)〈“𝑁”〉) |
16 | 12, 13, 15 | syl2anc 584 | 1 ⊢ (𝑁 ∈ 𝑉 → ∅(𝑁(WalksOn‘𝐺)𝑁)〈“𝑁”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5074 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℤcz 12319 ...cfz 13239 〈“cs1 14300 Vtxcvtx 27366 WalksOncwlkson 27964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-s1 14301 df-wlks 27966 df-wlkson 27967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |