| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osng | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1osng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4602 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | f1oeq2d 6799 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
| 3 | opeq1 4840 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 4 | 3 | sneqd 4604 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
| 5 | 4 | f1oeq1d 6798 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
| 6 | 2, 5 | bitrd 279 | . 2 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
| 7 | sneq 4602 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
| 8 | 7 | f1oeq3d 6800 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵})) |
| 9 | opeq2 4841 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 10 | 9 | sneqd 4604 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
| 11 | 10 | f1oeq1d 6798 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
| 12 | 8, 11 | bitrd 279 | . 2 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
| 13 | vex 3454 | . . 3 ⊢ 𝑎 ∈ V | |
| 14 | vex 3454 | . . 3 ⊢ 𝑏 ∈ V | |
| 15 | 13, 14 | f1osn 6843 | . 2 ⊢ {〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} |
| 16 | 6, 12, 15 | vtocl2g 3543 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: f1sng 6845 f1oprswap 6847 f1oprg 6848 f1o2sn 7117 fsnunf 7162 fsnex 7261 suppsnop 8160 mapsnd 8862 ralxpmap 8872 en2sn 9015 enfixsn 9055 fseqenlem1 9984 canthp1lem2 10613 sumsnf 15716 prodsn 15935 prodsnf 15937 vdwlem8 16966 gsumws1 18772 symg1bas 19328 dprdsn 19975 eupthp1 30152 s1f1 32871 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 mapfzcons 42711 sumsnd 45027 1hegrlfgr 48124 |
| Copyright terms: Public domain | W3C validator |