MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osng Structured version   Visualization version   GIF version

Theorem f1osng 6750
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})

Proof of Theorem f1osng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4572 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21f1oeq2d 6705 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
3 opeq1 4805 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 4574 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54f1oeq1d 6704 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
62, 5bitrd 278 . 2 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
7 sneq 4572 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
87f1oeq3d 6706 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵}))
9 opeq2 4806 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
109sneqd 4574 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1110f1oeq1d 6704 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
128, 11bitrd 278 . 2 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
13 vex 3434 . . 3 𝑎 ∈ V
14 vex 3434 . . 3 𝑏 ∈ V
1513, 14f1osn 6749 . 2 {⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏}
166, 12, 15vtocl2g 3508 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4562  cop 4568  1-1-ontowf1o 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-br 5075  df-opab 5137  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434
This theorem is referenced by:  f1sng  6751  f1oprswap  6753  f1oprg  6754  f1o2sn  7007  fsnunf  7050  fsnex  7148  suppsnop  7982  mapsnd  8662  ralxpmap  8672  en2sn  8819  en2snOLD  8820  enfixsn  8856  fseqenlem1  9768  canthp1lem2  10397  sumsnf  15443  prodsn  15660  prodsnf  15662  vdwlem8  16677  gsumws1  18464  symg1bas  18986  dprdsn  19627  eupthp1  28566  s1f1  31203  poimirlem16  35779  poimirlem17  35780  poimirlem19  35782  poimirlem20  35783  metakunt25  40135  mapfzcons  40524  sumsnd  42528  1hegrlfgr  45250
  Copyright terms: Public domain W3C validator