Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1osng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1osng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4572 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | f1oeq2d 6705 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
3 | opeq1 4805 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
4 | 3 | sneqd 4574 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
5 | 4 | f1oeq1d 6704 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
6 | 2, 5 | bitrd 278 | . 2 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
7 | sneq 4572 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
8 | 7 | f1oeq3d 6706 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵})) |
9 | opeq2 4806 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
10 | 9 | sneqd 4574 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
11 | 10 | f1oeq1d 6704 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
12 | 8, 11 | bitrd 278 | . 2 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
13 | vex 3434 | . . 3 ⊢ 𝑎 ∈ V | |
14 | vex 3434 | . . 3 ⊢ 𝑏 ∈ V | |
15 | 13, 14 | f1osn 6749 | . 2 ⊢ {〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} |
16 | 6, 12, 15 | vtocl2g 3508 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4562 〈cop 4568 –1-1-onto→wf1o 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5075 df-opab 5137 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 |
This theorem is referenced by: f1sng 6751 f1oprswap 6753 f1oprg 6754 f1o2sn 7007 fsnunf 7050 fsnex 7148 suppsnop 7982 mapsnd 8662 ralxpmap 8672 en2sn 8819 en2snOLD 8820 enfixsn 8856 fseqenlem1 9768 canthp1lem2 10397 sumsnf 15443 prodsn 15660 prodsnf 15662 vdwlem8 16677 gsumws1 18464 symg1bas 18986 dprdsn 19627 eupthp1 28566 s1f1 31203 poimirlem16 35779 poimirlem17 35780 poimirlem19 35782 poimirlem20 35783 metakunt25 40135 mapfzcons 40524 sumsnd 42528 1hegrlfgr 45250 |
Copyright terms: Public domain | W3C validator |