MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osng Structured version   Visualization version   GIF version

Theorem f1osng 6859
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})

Proof of Theorem f1osng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4611 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21f1oeq2d 6814 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
3 opeq1 4849 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 4613 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54f1oeq1d 6813 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
62, 5bitrd 279 . 2 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
7 sneq 4611 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
87f1oeq3d 6815 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵}))
9 opeq2 4850 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
109sneqd 4613 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1110f1oeq1d 6813 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
128, 11bitrd 279 . 2 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
13 vex 3463 . . 3 𝑎 ∈ V
14 vex 3463 . . 3 𝑏 ∈ V
1513, 14f1osn 6858 . 2 {⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏}
166, 12, 15vtocl2g 3553 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601  cop 4607  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  f1sng  6860  f1oprswap  6862  f1oprg  6863  f1o2sn  7132  fsnunf  7177  fsnex  7276  suppsnop  8177  mapsnd  8900  ralxpmap  8910  en2sn  9055  enfixsn  9095  fseqenlem1  10038  canthp1lem2  10667  sumsnf  15759  prodsn  15978  prodsnf  15980  vdwlem8  17008  gsumws1  18816  symg1bas  19372  dprdsn  20019  eupthp1  30197  s1f1  32918  poimirlem16  37660  poimirlem17  37661  poimirlem19  37663  poimirlem20  37664  metakunt25  42242  mapfzcons  42739  sumsnd  45050  1hegrlfgr  48107
  Copyright terms: Public domain W3C validator