![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1osng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1osng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4641 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | f1oeq2d 6845 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
3 | opeq1 4878 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
4 | 3 | sneqd 4643 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
5 | 4 | f1oeq1d 6844 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
6 | 2, 5 | bitrd 279 | . 2 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
7 | sneq 4641 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
8 | 7 | f1oeq3d 6846 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵})) |
9 | opeq2 4879 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
10 | 9 | sneqd 4643 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
11 | 10 | f1oeq1d 6844 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
12 | 8, 11 | bitrd 279 | . 2 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
13 | vex 3482 | . . 3 ⊢ 𝑎 ∈ V | |
14 | vex 3482 | . . 3 ⊢ 𝑏 ∈ V | |
15 | 13, 14 | f1osn 6889 | . 2 ⊢ {〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} |
16 | 6, 12, 15 | vtocl2g 3574 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 〈cop 4637 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: f1sng 6891 f1oprswap 6893 f1oprg 6894 f1o2sn 7162 fsnunf 7205 fsnex 7303 suppsnop 8202 mapsnd 8925 ralxpmap 8935 en2sn 9080 enfixsn 9120 fseqenlem1 10062 canthp1lem2 10691 sumsnf 15776 prodsn 15995 prodsnf 15997 vdwlem8 17022 gsumws1 18864 symg1bas 19423 dprdsn 20071 eupthp1 30245 s1f1 32912 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 metakunt25 42211 mapfzcons 42704 sumsnd 44964 1hegrlfgr 47976 |
Copyright terms: Public domain | W3C validator |