MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osng Structured version   Visualization version   GIF version

Theorem f1osng 6903
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1osng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})

Proof of Theorem f1osng
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4658 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21f1oeq2d 6858 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
3 opeq1 4897 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
43sneqd 4660 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, 𝑏⟩} = {⟨𝐴, 𝑏⟩})
54f1oeq1d 6857 . . 3 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
62, 5bitrd 279 . 2 (𝑎 = 𝐴 → ({⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏}))
7 sneq 4658 . . . 4 (𝑏 = 𝐵 → {𝑏} = {𝐵})
87f1oeq3d 6859 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵}))
9 opeq2 4898 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
109sneqd 4660 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, 𝑏⟩} = {⟨𝐴, 𝐵⟩})
1110f1oeq1d 6857 . . 3 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
128, 11bitrd 279 . 2 (𝑏 = 𝐵 → ({⟨𝐴, 𝑏⟩}:{𝐴}–1-1-onto→{𝑏} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
13 vex 3492 . . 3 𝑎 ∈ V
14 vex 3492 . . 3 𝑏 ∈ V
1513, 14f1osn 6902 . 2 {⟨𝑎, 𝑏⟩}:{𝑎}–1-1-onto→{𝑏}
166, 12, 15vtocl2g 3586 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1sng  6904  f1oprswap  6906  f1oprg  6907  f1o2sn  7176  fsnunf  7219  fsnex  7319  suppsnop  8219  mapsnd  8944  ralxpmap  8954  en2sn  9106  en2snOLD  9107  enfixsn  9147  fseqenlem1  10093  canthp1lem2  10722  sumsnf  15791  prodsn  16010  prodsnf  16012  vdwlem8  17035  gsumws1  18873  symg1bas  19432  dprdsn  20080  eupthp1  30248  s1f1  32909  poimirlem16  37596  poimirlem17  37597  poimirlem19  37599  poimirlem20  37600  metakunt25  42186  mapfzcons  42672  sumsnd  44926  1hegrlfgr  47855
  Copyright terms: Public domain W3C validator