| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osng | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1osng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4616 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | f1oeq2d 6824 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
| 3 | opeq1 4853 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) | |
| 4 | 3 | sneqd 4618 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, 𝑏〉} = {〈𝐴, 𝑏〉}) |
| 5 | 4 | f1oeq1d 6823 | . . 3 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
| 6 | 2, 5 | bitrd 279 | . 2 ⊢ (𝑎 = 𝐴 → ({〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏})) |
| 7 | sneq 4616 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
| 8 | 7 | f1oeq3d 6825 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵})) |
| 9 | opeq2 4854 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) | |
| 10 | 9 | sneqd 4618 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, 𝑏〉} = {〈𝐴, 𝐵〉}) |
| 11 | 10 | f1oeq1d 6823 | . . 3 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝐵} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
| 12 | 8, 11 | bitrd 279 | . 2 ⊢ (𝑏 = 𝐵 → ({〈𝐴, 𝑏〉}:{𝐴}–1-1-onto→{𝑏} ↔ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵})) |
| 13 | vex 3467 | . . 3 ⊢ 𝑎 ∈ V | |
| 14 | vex 3467 | . . 3 ⊢ 𝑏 ∈ V | |
| 15 | 13, 14 | f1osn 6868 | . 2 ⊢ {〈𝑎, 𝑏〉}:{𝑎}–1-1-onto→{𝑏} |
| 16 | 6, 12, 15 | vtocl2g 3557 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 〈cop 4612 –1-1-onto→wf1o 6540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 |
| This theorem is referenced by: f1sng 6870 f1oprswap 6872 f1oprg 6873 f1o2sn 7142 fsnunf 7187 fsnex 7285 suppsnop 8185 mapsnd 8908 ralxpmap 8918 en2sn 9063 enfixsn 9103 fseqenlem1 10046 canthp1lem2 10675 sumsnf 15762 prodsn 15981 prodsnf 15983 vdwlem8 17009 gsumws1 18821 symg1bas 19377 dprdsn 20025 eupthp1 30164 s1f1 32872 poimirlem16 37618 poimirlem17 37619 poimirlem19 37621 poimirlem20 37622 metakunt25 42205 mapfzcons 42705 sumsnd 45003 1hegrlfgr 48021 |
| Copyright terms: Public domain | W3C validator |