| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsnd | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsnd | ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | fsnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
| 4 | f1sng 6824 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
| 5 | f1f 6738 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | |
| 6 | 3, 4, 5 | 3syl 18 | 1 ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {csn 4585 〈cop 4591 ⟶wf 6495 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: 1fv 13584 snopiswrd 14464 frgpcyg 21459 mat1dimmul 22339 pt1hmeo 23669 upgr1e 29016 1hevtxdg1 29410 wlkp1 29583 wlkl0 30269 reprsuc 34579 breprexplema 34594 satfv1lem 35322 frlmsnic 42501 fsetsniunop 47023 nnsum3primesprm 47764 0aryfvalel 48596 fv1arycl 48599 1arympt1fv 48601 1arymaptfo 48605 |
| Copyright terms: Public domain | W3C validator |