MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnd Structured version   Visualization version   GIF version

Theorem fsnd 6877
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
fsnd.a (𝜑𝐴𝑉)
fsnd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
fsnd (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)

Proof of Theorem fsnd
StepHypRef Expression
1 fsnd.a . . 3 (𝜑𝐴𝑉)
2 fsnd.b . . 3 (𝜑𝐵𝑊)
31, 2jca 513 . 2 (𝜑 → (𝐴𝑉𝐵𝑊))
4 f1sng 6876 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
5 f1f 6788 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
63, 4, 53syl 18 1 (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  {csn 4629  cop 4635  wf 6540  1-1wf1 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551
This theorem is referenced by:  1fv  13620  snopiswrd  14473  frgpcyg  21129  mat1dimmul  21978  pt1hmeo  23310  upgr1e  28373  1hevtxdg1  28763  wlkp1  28938  wlkl0  29620  reprsuc  33627  breprexplema  33642  satfv1lem  34353  frlmsnic  41110  fsetsniunop  45759  nnsum3primesprm  46458  0aryfvalel  47320  fv1arycl  47323  1arympt1fv  47325  1arymaptfo  47329
  Copyright terms: Public domain W3C validator