MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnd Structured version   Visualization version   GIF version

Theorem fsnd 6759
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
fsnd.a (𝜑𝐴𝑉)
fsnd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
fsnd (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)

Proof of Theorem fsnd
StepHypRef Expression
1 fsnd.a . . 3 (𝜑𝐴𝑉)
2 fsnd.b . . 3 (𝜑𝐵𝑊)
31, 2jca 512 . 2 (𝜑 → (𝐴𝑉𝐵𝑊))
4 f1sng 6758 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
5 f1f 6670 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
63, 4, 53syl 18 1 (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  {csn 4561  cop 4567  wf 6429  1-1wf1 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  1fv  13375  snopiswrd  14226  frgpcyg  20781  mat1dimmul  21625  pt1hmeo  22957  upgr1e  27483  1hevtxdg1  27873  wlkp1  28049  wlkl0  28731  reprsuc  32595  breprexplema  32610  satfv1lem  33324  frlmsnic  40263  fsetsniunop  44543  nnsum3primesprm  45242  0aryfvalel  45980  fv1arycl  45983  1arympt1fv  45985  1arymaptfo  45989
  Copyright terms: Public domain W3C validator