MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnd Structured version   Visualization version   GIF version

Theorem fsnd 6905
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
fsnd.a (𝜑𝐴𝑉)
fsnd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
fsnd (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)

Proof of Theorem fsnd
StepHypRef Expression
1 fsnd.a . . 3 (𝜑𝐴𝑉)
2 fsnd.b . . 3 (𝜑𝐵𝑊)
31, 2jca 511 . 2 (𝜑 → (𝐴𝑉𝐵𝑊))
4 f1sng 6904 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
5 f1f 6817 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
63, 4, 53syl 18 1 (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {csn 4648  cop 4654  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  1fv  13704  snopiswrd  14571  frgpcyg  21615  mat1dimmul  22503  pt1hmeo  23835  upgr1e  29148  1hevtxdg1  29542  wlkp1  29717  wlkl0  30399  reprsuc  34592  breprexplema  34607  satfv1lem  35330  frlmsnic  42495  fsetsniunop  46964  nnsum3primesprm  47664  0aryfvalel  48368  fv1arycl  48371  1arympt1fv  48373  1arymaptfo  48377
  Copyright terms: Public domain W3C validator