MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnd Structured version   Visualization version   GIF version

Theorem fsnd 6892
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
fsnd.a (𝜑𝐴𝑉)
fsnd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
fsnd (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)

Proof of Theorem fsnd
StepHypRef Expression
1 fsnd.a . . 3 (𝜑𝐴𝑉)
2 fsnd.b . . 3 (𝜑𝐵𝑊)
31, 2jca 511 . 2 (𝜑 → (𝐴𝑉𝐵𝑊))
4 f1sng 6891 . 2 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
5 f1f 6805 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
63, 4, 53syl 18 1 (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  {csn 4631  cop 4637  wf 6559  1-1wf1 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570
This theorem is referenced by:  1fv  13684  snopiswrd  14558  frgpcyg  21610  mat1dimmul  22498  pt1hmeo  23830  upgr1e  29145  1hevtxdg1  29539  wlkp1  29714  wlkl0  30396  reprsuc  34609  breprexplema  34624  satfv1lem  35347  frlmsnic  42527  fsetsniunop  46999  nnsum3primesprm  47715  0aryfvalel  48484  fv1arycl  48487  1arympt1fv  48489  1arymaptfo  48493
  Copyright terms: Public domain W3C validator