![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsnd | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
fsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
fsnd | ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | fsnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
4 | f1sng 6904 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
5 | f1f 6817 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | |
6 | 3, 4, 5 | 3syl 18 | 1 ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {csn 4648 〈cop 4654 ⟶wf 6569 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: 1fv 13704 snopiswrd 14571 frgpcyg 21615 mat1dimmul 22503 pt1hmeo 23835 upgr1e 29148 1hevtxdg1 29542 wlkp1 29717 wlkl0 30399 reprsuc 34592 breprexplema 34607 satfv1lem 35330 frlmsnic 42495 fsetsniunop 46964 nnsum3primesprm 47664 0aryfvalel 48368 fv1arycl 48371 1arympt1fv 48373 1arymaptfo 48377 |
Copyright terms: Public domain | W3C validator |