Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsnd | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
fsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
fsnd | ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | fsnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
4 | f1sng 6758 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
5 | f1f 6670 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | |
6 | 3, 4, 5 | 3syl 18 | 1 ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {csn 4561 〈cop 4567 ⟶wf 6429 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: 1fv 13375 snopiswrd 14226 frgpcyg 20781 mat1dimmul 21625 pt1hmeo 22957 upgr1e 27483 1hevtxdg1 27873 wlkp1 28049 wlkl0 28731 reprsuc 32595 breprexplema 32610 satfv1lem 33324 frlmsnic 40263 fsetsniunop 44543 nnsum3primesprm 45242 0aryfvalel 45980 fv1arycl 45983 1arympt1fv 45985 1arymaptfo 45989 |
Copyright terms: Public domain | W3C validator |