| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsnd | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsnd | ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | fsnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
| 4 | f1sng 6800 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
| 5 | f1f 6714 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | |
| 6 | 3, 4, 5 | 3syl 18 | 1 ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {csn 4571 〈cop 4577 ⟶wf 6472 –1-1→wf1 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: 1fv 13542 snopiswrd 14425 frgpcyg 21505 mat1dimmul 22386 pt1hmeo 23716 upgr1e 29086 1hevtxdg1 29480 wlkp1 29653 wlkl0 30339 reprsuc 34620 breprexplema 34635 satfv1lem 35398 frlmsnic 42573 fsetsniunop 47080 nnsum3primesprm 47821 0aryfvalel 48666 fv1arycl 48669 1arympt1fv 48671 1arymaptfo 48675 |
| Copyright terms: Public domain | W3C validator |