Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafv2elcdm Structured version   Visualization version   GIF version

Theorem fafv2elcdm 47251
Description: An alternate function value belongs to the codomain of the function, analogous to ffvelcdm 7100. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
fafv2elcdm ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ 𝐵)

Proof of Theorem fafv2elcdm
StepHypRef Expression
1 ffn 6735 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnafv2elrn 47250 . . 3 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
31, 2sylan 580 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
4 frn 6742 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
54sseld 3981 . . 3 (𝐹:𝐴𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹 → (𝐹''''𝐶) ∈ 𝐵))
65adantr 480 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹''''𝐶) ∈ ran 𝐹 → (𝐹''''𝐶) ∈ 𝐵))
73, 6mpd 15 1 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ran crn 5685   Fn wfn 6555  wf 6556  ''''cafv2 47225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-dfat 47136  df-afv2 47226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator