Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcores Structured version   Visualization version   GIF version

Theorem fcores 47098
Description: Every composite function (𝐺𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcores (𝜑 → (𝐺𝐹) = (𝑌𝑋))

Proof of Theorem fcores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
2 fcores.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
32ffund 6650 . . . . 5 (𝜑 → Fun 𝐹)
4 fcof 6669 . . . . 5 ((𝐺:𝐶𝐷 ∧ Fun 𝐹) → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
51, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
65ffnd 6647 . . 3 (𝜑 → (𝐺𝐹) Fn (𝐹𝐶))
7 fcores.p . . . 4 𝑃 = (𝐹𝐶)
87fneq2i 6574 . . 3 ((𝐺𝐹) Fn 𝑃 ↔ (𝐺𝐹) Fn (𝐹𝐶))
96, 8sylibr 234 . 2 (𝜑 → (𝐺𝐹) Fn 𝑃)
10 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
11 fcores.x . . 3 𝑋 = (𝐹𝑃)
12 fcores.y . . 3 𝑌 = (𝐺𝐸)
132, 10, 7, 11, 1, 12fcoreslem4 47097 . 2 (𝜑 → (𝑌𝑋) Fn 𝑃)
1411fveq1i 6818 . . . . . 6 (𝑋𝑥) = ((𝐹𝑃)‘𝑥)
15 simpr 484 . . . . . . 7 ((𝜑𝑥𝑃) → 𝑥𝑃)
1615fvresd 6837 . . . . . 6 ((𝜑𝑥𝑃) → ((𝐹𝑃)‘𝑥) = (𝐹𝑥))
1714, 16eqtrid 2778 . . . . 5 ((𝜑𝑥𝑃) → (𝑋𝑥) = (𝐹𝑥))
1817fveq2d 6821 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝐹𝑥)))
1912fveq1i 6818 . . . . 5 (𝑌‘(𝐹𝑥)) = ((𝐺𝐸)‘(𝐹𝑥))
20 cnvimass 6026 . . . . . . . . . . 11 (𝐹𝐶) ⊆ dom 𝐹
217, 20eqsstri 3976 . . . . . . . . . 10 𝑃 ⊆ dom 𝐹
2221sseli 3925 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ dom 𝐹)
23 fvelrn 7004 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
243, 22, 23syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ ran 𝐹)
257eleq2i 2823 . . . . . . . . . 10 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
2625biimpi 216 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
27 fvimacnvi 6980 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ (𝐹𝐶)) → (𝐹𝑥) ∈ 𝐶)
283, 26, 27syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐶)
2924, 28elind 4145 . . . . . . 7 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ (ran 𝐹𝐶))
3029, 10eleqtrrdi 2842 . . . . . 6 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐸)
3130fvresd 6837 . . . . 5 ((𝜑𝑥𝑃) → ((𝐺𝐸)‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3219, 31eqtrid 2778 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3318, 32eqtrd 2766 . . 3 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝐺‘(𝐹𝑥)))
342, 10, 7, 11fcoreslem3 47096 . . . . . 6 (𝜑𝑋:𝑃onto𝐸)
35 fof 6730 . . . . . 6 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
3634, 35syl 17 . . . . 5 (𝜑𝑋:𝑃𝐸)
3736adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝑋:𝑃𝐸)
3837, 15fvco3d 6917 . . 3 ((𝜑𝑥𝑃) → ((𝑌𝑋)‘𝑥) = (𝑌‘(𝑋𝑥)))
392adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐹:𝐴𝐵)
4021a1i 11 . . . . . 6 (𝜑𝑃 ⊆ dom 𝐹)
4140sselda 3929 . . . . 5 ((𝜑𝑥𝑃) → 𝑥 ∈ dom 𝐹)
422fdmd 6656 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
4342eqcomd 2737 . . . . . . 7 (𝜑𝐴 = dom 𝐹)
4443eleq2d 2817 . . . . . 6 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
4544adantr 480 . . . . 5 ((𝜑𝑥𝑃) → (𝑥𝐴𝑥 ∈ dom 𝐹))
4641, 45mpbird 257 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝐴)
4739, 46fvco3d 6917 . . 3 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4833, 38, 473eqtr4rd 2777 . 2 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = ((𝑌𝑋)‘𝑥))
499, 13, 48eqfnfvd 6962 1 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897  ccnv 5610  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  ccom 5615  Fun wfun 6470   Fn wfn 6471  wf 6472  ontowfo 6474  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484
This theorem is referenced by:  fcoresf1lem  47099  fcoresf1b  47101  fcoresfo  47102  fcoresfob  47103
  Copyright terms: Public domain W3C validator