Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcores Structured version   Visualization version   GIF version

Theorem fcores 47041
Description: Every composite function (𝐺𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcores (𝜑 → (𝐺𝐹) = (𝑌𝑋))

Proof of Theorem fcores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
2 fcores.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
32ffund 6674 . . . . 5 (𝜑 → Fun 𝐹)
4 fcof 6693 . . . . 5 ((𝐺:𝐶𝐷 ∧ Fun 𝐹) → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
51, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
65ffnd 6671 . . 3 (𝜑 → (𝐺𝐹) Fn (𝐹𝐶))
7 fcores.p . . . 4 𝑃 = (𝐹𝐶)
87fneq2i 6598 . . 3 ((𝐺𝐹) Fn 𝑃 ↔ (𝐺𝐹) Fn (𝐹𝐶))
96, 8sylibr 234 . 2 (𝜑 → (𝐺𝐹) Fn 𝑃)
10 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
11 fcores.x . . 3 𝑋 = (𝐹𝑃)
12 fcores.y . . 3 𝑌 = (𝐺𝐸)
132, 10, 7, 11, 1, 12fcoreslem4 47040 . 2 (𝜑 → (𝑌𝑋) Fn 𝑃)
1411fveq1i 6841 . . . . . 6 (𝑋𝑥) = ((𝐹𝑃)‘𝑥)
15 simpr 484 . . . . . . 7 ((𝜑𝑥𝑃) → 𝑥𝑃)
1615fvresd 6860 . . . . . 6 ((𝜑𝑥𝑃) → ((𝐹𝑃)‘𝑥) = (𝐹𝑥))
1714, 16eqtrid 2776 . . . . 5 ((𝜑𝑥𝑃) → (𝑋𝑥) = (𝐹𝑥))
1817fveq2d 6844 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝐹𝑥)))
1912fveq1i 6841 . . . . 5 (𝑌‘(𝐹𝑥)) = ((𝐺𝐸)‘(𝐹𝑥))
20 cnvimass 6042 . . . . . . . . . . 11 (𝐹𝐶) ⊆ dom 𝐹
217, 20eqsstri 3990 . . . . . . . . . 10 𝑃 ⊆ dom 𝐹
2221sseli 3939 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ dom 𝐹)
23 fvelrn 7030 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
243, 22, 23syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ ran 𝐹)
257eleq2i 2820 . . . . . . . . . 10 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
2625biimpi 216 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
27 fvimacnvi 7006 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ (𝐹𝐶)) → (𝐹𝑥) ∈ 𝐶)
283, 26, 27syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐶)
2924, 28elind 4159 . . . . . . 7 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ (ran 𝐹𝐶))
3029, 10eleqtrrdi 2839 . . . . . 6 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐸)
3130fvresd 6860 . . . . 5 ((𝜑𝑥𝑃) → ((𝐺𝐸)‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3219, 31eqtrid 2776 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3318, 32eqtrd 2764 . . 3 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝐺‘(𝐹𝑥)))
342, 10, 7, 11fcoreslem3 47039 . . . . . 6 (𝜑𝑋:𝑃onto𝐸)
35 fof 6754 . . . . . 6 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
3634, 35syl 17 . . . . 5 (𝜑𝑋:𝑃𝐸)
3736adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝑋:𝑃𝐸)
3837, 15fvco3d 6943 . . 3 ((𝜑𝑥𝑃) → ((𝑌𝑋)‘𝑥) = (𝑌‘(𝑋𝑥)))
392adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐹:𝐴𝐵)
4021a1i 11 . . . . . 6 (𝜑𝑃 ⊆ dom 𝐹)
4140sselda 3943 . . . . 5 ((𝜑𝑥𝑃) → 𝑥 ∈ dom 𝐹)
422fdmd 6680 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
4342eqcomd 2735 . . . . . . 7 (𝜑𝐴 = dom 𝐹)
4443eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
4544adantr 480 . . . . 5 ((𝜑𝑥𝑃) → (𝑥𝐴𝑥 ∈ dom 𝐹))
4641, 45mpbird 257 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝐴)
4739, 46fvco3d 6943 . . 3 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4833, 38, 473eqtr4rd 2775 . 2 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = ((𝑌𝑋)‘𝑥))
499, 13, 48eqfnfvd 6988 1 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  ccom 5635  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507
This theorem is referenced by:  fcoresf1lem  47042  fcoresf1b  47044  fcoresfo  47045  fcoresfob  47046
  Copyright terms: Public domain W3C validator