Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcores Structured version   Visualization version   GIF version

Theorem fcores 46982
Description: Every composite function (𝐺𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcores (𝜑 → (𝐺𝐹) = (𝑌𝑋))

Proof of Theorem fcores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
2 fcores.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
32ffund 6751 . . . . 5 (𝜑 → Fun 𝐹)
4 fcof 6770 . . . . 5 ((𝐺:𝐶𝐷 ∧ Fun 𝐹) → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
51, 3, 4syl2anc 583 . . . 4 (𝜑 → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
65ffnd 6748 . . 3 (𝜑 → (𝐺𝐹) Fn (𝐹𝐶))
7 fcores.p . . . 4 𝑃 = (𝐹𝐶)
87fneq2i 6677 . . 3 ((𝐺𝐹) Fn 𝑃 ↔ (𝐺𝐹) Fn (𝐹𝐶))
96, 8sylibr 234 . 2 (𝜑 → (𝐺𝐹) Fn 𝑃)
10 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
11 fcores.x . . 3 𝑋 = (𝐹𝑃)
12 fcores.y . . 3 𝑌 = (𝐺𝐸)
132, 10, 7, 11, 1, 12fcoreslem4 46981 . 2 (𝜑 → (𝑌𝑋) Fn 𝑃)
1411fveq1i 6921 . . . . . 6 (𝑋𝑥) = ((𝐹𝑃)‘𝑥)
15 simpr 484 . . . . . . 7 ((𝜑𝑥𝑃) → 𝑥𝑃)
1615fvresd 6940 . . . . . 6 ((𝜑𝑥𝑃) → ((𝐹𝑃)‘𝑥) = (𝐹𝑥))
1714, 16eqtrid 2792 . . . . 5 ((𝜑𝑥𝑃) → (𝑋𝑥) = (𝐹𝑥))
1817fveq2d 6924 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝐹𝑥)))
1912fveq1i 6921 . . . . 5 (𝑌‘(𝐹𝑥)) = ((𝐺𝐸)‘(𝐹𝑥))
20 cnvimass 6111 . . . . . . . . . . 11 (𝐹𝐶) ⊆ dom 𝐹
217, 20eqsstri 4043 . . . . . . . . . 10 𝑃 ⊆ dom 𝐹
2221sseli 4004 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ dom 𝐹)
23 fvelrn 7110 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
243, 22, 23syl2an 595 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ ran 𝐹)
257eleq2i 2836 . . . . . . . . . 10 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
2625biimpi 216 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
27 fvimacnvi 7085 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ (𝐹𝐶)) → (𝐹𝑥) ∈ 𝐶)
283, 26, 27syl2an 595 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐶)
2924, 28elind 4223 . . . . . . 7 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ (ran 𝐹𝐶))
3029, 10eleqtrrdi 2855 . . . . . 6 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐸)
3130fvresd 6940 . . . . 5 ((𝜑𝑥𝑃) → ((𝐺𝐸)‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3219, 31eqtrid 2792 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3318, 32eqtrd 2780 . . 3 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝐺‘(𝐹𝑥)))
342, 10, 7, 11fcoreslem3 46980 . . . . . 6 (𝜑𝑋:𝑃onto𝐸)
35 fof 6834 . . . . . 6 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
3634, 35syl 17 . . . . 5 (𝜑𝑋:𝑃𝐸)
3736adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝑋:𝑃𝐸)
3837, 15fvco3d 7022 . . 3 ((𝜑𝑥𝑃) → ((𝑌𝑋)‘𝑥) = (𝑌‘(𝑋𝑥)))
392adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐹:𝐴𝐵)
4021a1i 11 . . . . . 6 (𝜑𝑃 ⊆ dom 𝐹)
4140sselda 4008 . . . . 5 ((𝜑𝑥𝑃) → 𝑥 ∈ dom 𝐹)
422fdmd 6757 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
4342eqcomd 2746 . . . . . . 7 (𝜑𝐴 = dom 𝐹)
4443eleq2d 2830 . . . . . 6 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
4544adantr 480 . . . . 5 ((𝜑𝑥𝑃) → (𝑥𝐴𝑥 ∈ dom 𝐹))
4641, 45mpbird 257 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝐴)
4739, 46fvco3d 7022 . . 3 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4833, 38, 473eqtr4rd 2791 . 2 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = ((𝑌𝑋)‘𝑥))
499, 13, 48eqfnfvd 7067 1 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by:  fcoresf1lem  46983  fcoresf1b  46985  fcoresfo  46986  fcoresfob  46987
  Copyright terms: Public domain W3C validator