Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcores Structured version   Visualization version   GIF version

Theorem fcores 45763
Description: Every composite function (𝐺𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcores (𝜑 → (𝐺𝐹) = (𝑌𝑋))

Proof of Theorem fcores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
2 fcores.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
32ffund 6718 . . . . 5 (𝜑 → Fun 𝐹)
4 fcof 6737 . . . . 5 ((𝐺:𝐶𝐷 ∧ Fun 𝐹) → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
51, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):(𝐹𝐶)⟶𝐷)
65ffnd 6715 . . 3 (𝜑 → (𝐺𝐹) Fn (𝐹𝐶))
7 fcores.p . . . 4 𝑃 = (𝐹𝐶)
87fneq2i 6644 . . 3 ((𝐺𝐹) Fn 𝑃 ↔ (𝐺𝐹) Fn (𝐹𝐶))
96, 8sylibr 233 . 2 (𝜑 → (𝐺𝐹) Fn 𝑃)
10 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
11 fcores.x . . 3 𝑋 = (𝐹𝑃)
12 fcores.y . . 3 𝑌 = (𝐺𝐸)
132, 10, 7, 11, 1, 12fcoreslem4 45762 . 2 (𝜑 → (𝑌𝑋) Fn 𝑃)
1411fveq1i 6889 . . . . . 6 (𝑋𝑥) = ((𝐹𝑃)‘𝑥)
15 simpr 485 . . . . . . 7 ((𝜑𝑥𝑃) → 𝑥𝑃)
1615fvresd 6908 . . . . . 6 ((𝜑𝑥𝑃) → ((𝐹𝑃)‘𝑥) = (𝐹𝑥))
1714, 16eqtrid 2784 . . . . 5 ((𝜑𝑥𝑃) → (𝑋𝑥) = (𝐹𝑥))
1817fveq2d 6892 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝐹𝑥)))
1912fveq1i 6889 . . . . 5 (𝑌‘(𝐹𝑥)) = ((𝐺𝐸)‘(𝐹𝑥))
20 cnvimass 6077 . . . . . . . . . . 11 (𝐹𝐶) ⊆ dom 𝐹
217, 20eqsstri 4015 . . . . . . . . . 10 𝑃 ⊆ dom 𝐹
2221sseli 3977 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ dom 𝐹)
23 fvelrn 7075 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
243, 22, 23syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ ran 𝐹)
257eleq2i 2825 . . . . . . . . . 10 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
2625biimpi 215 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ (𝐹𝐶))
27 fvimacnvi 7050 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ (𝐹𝐶)) → (𝐹𝑥) ∈ 𝐶)
283, 26, 27syl2an 596 . . . . . . . 8 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐶)
2924, 28elind 4193 . . . . . . 7 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ (ran 𝐹𝐶))
3029, 10eleqtrrdi 2844 . . . . . 6 ((𝜑𝑥𝑃) → (𝐹𝑥) ∈ 𝐸)
3130fvresd 6908 . . . . 5 ((𝜑𝑥𝑃) → ((𝐺𝐸)‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3219, 31eqtrid 2784 . . . 4 ((𝜑𝑥𝑃) → (𝑌‘(𝐹𝑥)) = (𝐺‘(𝐹𝑥)))
3318, 32eqtrd 2772 . . 3 ((𝜑𝑥𝑃) → (𝑌‘(𝑋𝑥)) = (𝐺‘(𝐹𝑥)))
342, 10, 7, 11fcoreslem3 45761 . . . . . 6 (𝜑𝑋:𝑃onto𝐸)
35 fof 6802 . . . . . 6 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
3634, 35syl 17 . . . . 5 (𝜑𝑋:𝑃𝐸)
3736adantr 481 . . . 4 ((𝜑𝑥𝑃) → 𝑋:𝑃𝐸)
3837, 15fvco3d 6988 . . 3 ((𝜑𝑥𝑃) → ((𝑌𝑋)‘𝑥) = (𝑌‘(𝑋𝑥)))
392adantr 481 . . . 4 ((𝜑𝑥𝑃) → 𝐹:𝐴𝐵)
4021a1i 11 . . . . . 6 (𝜑𝑃 ⊆ dom 𝐹)
4140sselda 3981 . . . . 5 ((𝜑𝑥𝑃) → 𝑥 ∈ dom 𝐹)
422fdmd 6725 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
4342eqcomd 2738 . . . . . . 7 (𝜑𝐴 = dom 𝐹)
4443eleq2d 2819 . . . . . 6 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
4544adantr 481 . . . . 5 ((𝜑𝑥𝑃) → (𝑥𝐴𝑥 ∈ dom 𝐹))
4641, 45mpbird 256 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝐴)
4739, 46fvco3d 6988 . . 3 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4833, 38, 473eqtr4rd 2783 . 2 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = ((𝑌𝑋)‘𝑥))
499, 13, 48eqfnfvd 7032 1 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cin 3946  wss 3947  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  ccom 5679  Fun wfun 6534   Fn wfn 6535  wf 6536  ontowfo 6538  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548
This theorem is referenced by:  fcoresf1lem  45764  fcoresf1b  45766  fcoresfo  45767  fcoresfob  45768
  Copyright terms: Public domain W3C validator