Step | Hyp | Ref
| Expression |
1 | | fcores.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
2 | | fcores.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
3 | 2 | ffund 6604 |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
4 | | fcof 6623 |
. . . . 5
⊢ ((𝐺:𝐶⟶𝐷 ∧ Fun 𝐹) → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)⟶𝐷) |
5 | 1, 3, 4 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐺 ∘ 𝐹):(◡𝐹 “ 𝐶)⟶𝐷) |
6 | 5 | ffnd 6601 |
. . 3
⊢ (𝜑 → (𝐺 ∘ 𝐹) Fn (◡𝐹 “ 𝐶)) |
7 | | fcores.p |
. . . 4
⊢ 𝑃 = (◡𝐹 “ 𝐶) |
8 | 7 | fneq2i 6531 |
. . 3
⊢ ((𝐺 ∘ 𝐹) Fn 𝑃 ↔ (𝐺 ∘ 𝐹) Fn (◡𝐹 “ 𝐶)) |
9 | 6, 8 | sylibr 233 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹) Fn 𝑃) |
10 | | fcores.e |
. . 3
⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
11 | | fcores.x |
. . 3
⊢ 𝑋 = (𝐹 ↾ 𝑃) |
12 | | fcores.y |
. . 3
⊢ 𝑌 = (𝐺 ↾ 𝐸) |
13 | 2, 10, 7, 11, 1, 12 | fcoreslem4 44560 |
. 2
⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
14 | 11 | fveq1i 6775 |
. . . . . 6
⊢ (𝑋‘𝑥) = ((𝐹 ↾ 𝑃)‘𝑥) |
15 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) |
16 | 15 | fvresd 6794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝐹 ↾ 𝑃)‘𝑥) = (𝐹‘𝑥)) |
17 | 14, 16 | eqtrid 2790 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑋‘𝑥) = (𝐹‘𝑥)) |
18 | 17 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑌‘(𝑋‘𝑥)) = (𝑌‘(𝐹‘𝑥))) |
19 | 12 | fveq1i 6775 |
. . . . 5
⊢ (𝑌‘(𝐹‘𝑥)) = ((𝐺 ↾ 𝐸)‘(𝐹‘𝑥)) |
20 | | cnvimass 5989 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 |
21 | 7, 20 | eqsstri 3955 |
. . . . . . . . . 10
⊢ 𝑃 ⊆ dom 𝐹 |
22 | 21 | sseli 3917 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑃 → 𝑥 ∈ dom 𝐹) |
23 | | fvelrn 6954 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
24 | 3, 22, 23 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝐹‘𝑥) ∈ ran 𝐹) |
25 | 7 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑃 ↔ 𝑥 ∈ (◡𝐹 “ 𝐶)) |
26 | 25 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑃 → 𝑥 ∈ (◡𝐹 “ 𝐶)) |
27 | | fvimacnvi 6929 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝑥) ∈ 𝐶) |
28 | 3, 26, 27 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝐹‘𝑥) ∈ 𝐶) |
29 | 24, 28 | elind 4128 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝐹‘𝑥) ∈ (ran 𝐹 ∩ 𝐶)) |
30 | 29, 10 | eleqtrrdi 2850 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝐹‘𝑥) ∈ 𝐸) |
31 | 30 | fvresd 6794 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝐺 ↾ 𝐸)‘(𝐹‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
32 | 19, 31 | eqtrid 2790 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑌‘(𝐹‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
33 | 18, 32 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑌‘(𝑋‘𝑥)) = (𝐺‘(𝐹‘𝑥))) |
34 | 2, 10, 7, 11 | fcoreslem3 44559 |
. . . . . 6
⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
35 | | fof 6688 |
. . . . . 6
⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) |
36 | 34, 35 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
37 | 36 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑋:𝑃⟶𝐸) |
38 | 37, 15 | fvco3d 6868 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝑌 ∘ 𝑋)‘𝑥) = (𝑌‘(𝑋‘𝑥))) |
39 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐹:𝐴⟶𝐵) |
40 | 21 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑃 ⊆ dom 𝐹) |
41 | 40 | sselda 3921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ dom 𝐹) |
42 | 2 | fdmd 6611 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝐴) |
43 | 42 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = dom 𝐹) |
44 | 43 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ dom 𝐹)) |
45 | 44 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ dom 𝐹)) |
46 | 41, 45 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝐴) |
47 | 39, 46 | fvco3d 6868 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
48 | 33, 38, 47 | 3eqtr4rd 2789 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑥) = ((𝑌 ∘ 𝑋)‘𝑥)) |
49 | 9, 13, 48 | eqfnfvd 6912 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |