Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fcores 44448. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem2 | ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . . 3 ⊢ (𝐹 “ 𝑃) = ran (𝐹 ↾ 𝑃) | |
2 | fcores.x | . . . . . 6 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
3 | 2 | rneqi 5835 | . . . . 5 ⊢ ran 𝑋 = ran (𝐹 ↾ 𝑃) |
4 | 3 | eqcomi 2747 | . . . 4 ⊢ ran (𝐹 ↾ 𝑃) = ran 𝑋 |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝑃) = ran 𝑋) |
6 | 1, 5 | eqtr2id 2792 | . 2 ⊢ (𝜑 → ran 𝑋 = (𝐹 “ 𝑃)) |
7 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
9 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
10 | 7, 8, 9 | fcoreslem1 44444 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
11 | 10 | imaeq2d 5958 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑃) = (𝐹 “ (◡𝐹 “ 𝐸))) |
12 | 7 | ffund 6588 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
13 | funimacnv 6499 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) |
15 | inss1 4159 | . . . . . 6 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ ran 𝐹 | |
16 | 8, 15 | eqsstri 3951 | . . . . 5 ⊢ 𝐸 ⊆ ran 𝐹 |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ran 𝐹) |
18 | df-ss 3900 | . . . 4 ⊢ (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸) | |
19 | 17, 18 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸) |
20 | 14, 19 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = 𝐸) |
21 | 6, 11, 20 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fcoreslem4 44447 fcoresf1 44450 |
Copyright terms: Public domain | W3C validator |