Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem2 Structured version   Visualization version   GIF version

Theorem fcoreslem2 47014
Description: Lemma 2 for fcores 47017. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
Assertion
Ref Expression
fcoreslem2 (𝜑 → ran 𝑋 = 𝐸)

Proof of Theorem fcoreslem2
StepHypRef Expression
1 df-ima 5702 . . 3 (𝐹𝑃) = ran (𝐹𝑃)
2 fcores.x . . . . . 6 𝑋 = (𝐹𝑃)
32rneqi 5951 . . . . 5 ran 𝑋 = ran (𝐹𝑃)
43eqcomi 2744 . . . 4 ran (𝐹𝑃) = ran 𝑋
54a1i 11 . . 3 (𝜑 → ran (𝐹𝑃) = ran 𝑋)
61, 5eqtr2id 2788 . 2 (𝜑 → ran 𝑋 = (𝐹𝑃))
7 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
8 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
9 fcores.p . . . 4 𝑃 = (𝐹𝐶)
107, 8, 9fcoreslem1 47013 . . 3 (𝜑𝑃 = (𝐹𝐸))
1110imaeq2d 6080 . 2 (𝜑 → (𝐹𝑃) = (𝐹 “ (𝐹𝐸)))
127ffund 6741 . . . 4 (𝜑 → Fun 𝐹)
13 funimacnv 6649 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
1412, 13syl 17 . . 3 (𝜑 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
15 inss1 4245 . . . . . 6 (ran 𝐹𝐶) ⊆ ran 𝐹
168, 15eqsstri 4030 . . . . 5 𝐸 ⊆ ran 𝐹
1716a1i 11 . . . 4 (𝜑𝐸 ⊆ ran 𝐹)
18 dfss2 3981 . . . 4 (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸)
1917, 18sylib 218 . . 3 (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸)
2014, 19eqtrd 2775 . 2 (𝜑 → (𝐹 “ (𝐹𝐸)) = 𝐸)
216, 11, 203eqtrd 2779 1 (𝜑 → ran 𝑋 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3962  wss 3963  ccnv 5688  ran crn 5690  cres 5691  cima 5692  Fun wfun 6557  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  fcoreslem4  47016  fcoresf1  47019
  Copyright terms: Public domain W3C validator