![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fcores 46592. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem2 | ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5691 | . . 3 ⊢ (𝐹 “ 𝑃) = ran (𝐹 ↾ 𝑃) | |
2 | fcores.x | . . . . . 6 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
3 | 2 | rneqi 5939 | . . . . 5 ⊢ ran 𝑋 = ran (𝐹 ↾ 𝑃) |
4 | 3 | eqcomi 2734 | . . . 4 ⊢ ran (𝐹 ↾ 𝑃) = ran 𝑋 |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝑃) = ran 𝑋) |
6 | 1, 5 | eqtr2id 2778 | . 2 ⊢ (𝜑 → ran 𝑋 = (𝐹 “ 𝑃)) |
7 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
9 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
10 | 7, 8, 9 | fcoreslem1 46588 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
11 | 10 | imaeq2d 6064 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑃) = (𝐹 “ (◡𝐹 “ 𝐸))) |
12 | 7 | ffund 6727 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
13 | funimacnv 6635 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) |
15 | inss1 4227 | . . . . . 6 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ ran 𝐹 | |
16 | 8, 15 | eqsstri 4011 | . . . . 5 ⊢ 𝐸 ⊆ ran 𝐹 |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ran 𝐹) |
18 | dfss2 3962 | . . . 4 ⊢ (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸) | |
19 | 17, 18 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸) |
20 | 14, 19 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = 𝐸) |
21 | 6, 11, 20 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∩ cin 3943 ⊆ wss 3944 ◡ccnv 5677 ran crn 5679 ↾ cres 5680 “ cima 5681 Fun wfun 6543 ⟶wf 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6551 df-fn 6552 df-f 6553 |
This theorem is referenced by: fcoreslem4 46591 fcoresf1 46594 |
Copyright terms: Public domain | W3C validator |