Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fcores 44561. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem2 | ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . . 3 ⊢ (𝐹 “ 𝑃) = ran (𝐹 ↾ 𝑃) | |
2 | fcores.x | . . . . . 6 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
3 | 2 | rneqi 5846 | . . . . 5 ⊢ ran 𝑋 = ran (𝐹 ↾ 𝑃) |
4 | 3 | eqcomi 2747 | . . . 4 ⊢ ran (𝐹 ↾ 𝑃) = ran 𝑋 |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝑃) = ran 𝑋) |
6 | 1, 5 | eqtr2id 2791 | . 2 ⊢ (𝜑 → ran 𝑋 = (𝐹 “ 𝑃)) |
7 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
9 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
10 | 7, 8, 9 | fcoreslem1 44557 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
11 | 10 | imaeq2d 5969 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑃) = (𝐹 “ (◡𝐹 “ 𝐸))) |
12 | 7 | ffund 6604 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
13 | funimacnv 6515 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) |
15 | inss1 4162 | . . . . . 6 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ ran 𝐹 | |
16 | 8, 15 | eqsstri 3955 | . . . . 5 ⊢ 𝐸 ⊆ ran 𝐹 |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ran 𝐹) |
18 | df-ss 3904 | . . . 4 ⊢ (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸) | |
19 | 17, 18 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸) |
20 | 14, 19 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = 𝐸) |
21 | 6, 11, 20 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fcoreslem4 44560 fcoresf1 44563 |
Copyright terms: Public domain | W3C validator |