|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fcores 47084. (Contributed by AV, 17-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | 
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) | 
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) | 
| Ref | Expression | 
|---|---|
| fcoreslem2 | ⊢ (𝜑 → ran 𝑋 = 𝐸) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ima 5697 | . . 3 ⊢ (𝐹 “ 𝑃) = ran (𝐹 ↾ 𝑃) | |
| 2 | fcores.x | . . . . . 6 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 3 | 2 | rneqi 5947 | . . . . 5 ⊢ ran 𝑋 = ran (𝐹 ↾ 𝑃) | 
| 4 | 3 | eqcomi 2745 | . . . 4 ⊢ ran (𝐹 ↾ 𝑃) = ran 𝑋 | 
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝑃) = ran 𝑋) | 
| 6 | 1, 5 | eqtr2id 2789 | . 2 ⊢ (𝜑 → ran 𝑋 = (𝐹 “ 𝑃)) | 
| 7 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 8 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 9 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 10 | 7, 8, 9 | fcoreslem1 47080 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) | 
| 11 | 10 | imaeq2d 6077 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑃) = (𝐹 “ (◡𝐹 “ 𝐸))) | 
| 12 | 7 | ffund 6739 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | 
| 13 | funimacnv 6646 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | 
| 15 | inss1 4236 | . . . . . 6 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ ran 𝐹 | |
| 16 | 8, 15 | eqsstri 4029 | . . . . 5 ⊢ 𝐸 ⊆ ran 𝐹 | 
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ran 𝐹) | 
| 18 | dfss2 3968 | . . . 4 ⊢ (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸) | |
| 19 | 17, 18 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸) | 
| 20 | 14, 19 | eqtrd 2776 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = 𝐸) | 
| 21 | 6, 11, 20 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ran 𝑋 = 𝐸) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∩ cin 3949 ⊆ wss 3950 ◡ccnv 5683 ran crn 5685 ↾ cres 5686 “ cima 5687 Fun wfun 6554 ⟶wf 6556 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fun 6562 df-fn 6563 df-f 6564 | 
| This theorem is referenced by: fcoreslem4 47083 fcoresf1 47086 | 
| Copyright terms: Public domain | W3C validator |