Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem2 Structured version   Visualization version   GIF version

Theorem fcoreslem2 47052
Description: Lemma 2 for fcores 47055. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
Assertion
Ref Expression
fcoreslem2 (𝜑 → ran 𝑋 = 𝐸)

Proof of Theorem fcoreslem2
StepHypRef Expression
1 df-ima 5632 . . 3 (𝐹𝑃) = ran (𝐹𝑃)
2 fcores.x . . . . . 6 𝑋 = (𝐹𝑃)
32rneqi 5879 . . . . 5 ran 𝑋 = ran (𝐹𝑃)
43eqcomi 2738 . . . 4 ran (𝐹𝑃) = ran 𝑋
54a1i 11 . . 3 (𝜑 → ran (𝐹𝑃) = ran 𝑋)
61, 5eqtr2id 2777 . 2 (𝜑 → ran 𝑋 = (𝐹𝑃))
7 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
8 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
9 fcores.p . . . 4 𝑃 = (𝐹𝐶)
107, 8, 9fcoreslem1 47051 . . 3 (𝜑𝑃 = (𝐹𝐸))
1110imaeq2d 6011 . 2 (𝜑 → (𝐹𝑃) = (𝐹 “ (𝐹𝐸)))
127ffund 6656 . . . 4 (𝜑 → Fun 𝐹)
13 funimacnv 6563 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
1412, 13syl 17 . . 3 (𝜑 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
15 inss1 4188 . . . . . 6 (ran 𝐹𝐶) ⊆ ran 𝐹
168, 15eqsstri 3982 . . . . 5 𝐸 ⊆ ran 𝐹
1716a1i 11 . . . 4 (𝜑𝐸 ⊆ ran 𝐹)
18 dfss2 3921 . . . 4 (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸)
1917, 18sylib 218 . . 3 (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸)
2014, 19eqtrd 2764 . 2 (𝜑 → (𝐹 “ (𝐹𝐸)) = 𝐸)
216, 11, 203eqtrd 2768 1 (𝜑 → ran 𝑋 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3902  wss 3903  ccnv 5618  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  fcoreslem4  47054  fcoresf1  47057
  Copyright terms: Public domain W3C validator