Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem2 Structured version   Visualization version   GIF version

Theorem fcoreslem2 44445
Description: Lemma 2 for fcores 44448. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
Assertion
Ref Expression
fcoreslem2 (𝜑 → ran 𝑋 = 𝐸)

Proof of Theorem fcoreslem2
StepHypRef Expression
1 df-ima 5593 . . 3 (𝐹𝑃) = ran (𝐹𝑃)
2 fcores.x . . . . . 6 𝑋 = (𝐹𝑃)
32rneqi 5835 . . . . 5 ran 𝑋 = ran (𝐹𝑃)
43eqcomi 2747 . . . 4 ran (𝐹𝑃) = ran 𝑋
54a1i 11 . . 3 (𝜑 → ran (𝐹𝑃) = ran 𝑋)
61, 5eqtr2id 2792 . 2 (𝜑 → ran 𝑋 = (𝐹𝑃))
7 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
8 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
9 fcores.p . . . 4 𝑃 = (𝐹𝐶)
107, 8, 9fcoreslem1 44444 . . 3 (𝜑𝑃 = (𝐹𝐸))
1110imaeq2d 5958 . 2 (𝜑 → (𝐹𝑃) = (𝐹 “ (𝐹𝐸)))
127ffund 6588 . . . 4 (𝜑 → Fun 𝐹)
13 funimacnv 6499 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
1412, 13syl 17 . . 3 (𝜑 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
15 inss1 4159 . . . . . 6 (ran 𝐹𝐶) ⊆ ran 𝐹
168, 15eqsstri 3951 . . . . 5 𝐸 ⊆ ran 𝐹
1716a1i 11 . . . 4 (𝜑𝐸 ⊆ ran 𝐹)
18 df-ss 3900 . . . 4 (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸)
1917, 18sylib 217 . . 3 (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸)
2014, 19eqtrd 2778 . 2 (𝜑 → (𝐹 “ (𝐹𝐸)) = 𝐸)
216, 11, 203eqtrd 2782 1 (𝜑 → ran 𝑋 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  wss 3883  ccnv 5579  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  fcoreslem4  44447  fcoresf1  44450
  Copyright terms: Public domain W3C validator