Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem2 Structured version   Visualization version   GIF version

Theorem fcoreslem2 46979
Description: Lemma 2 for fcores 46982. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
Assertion
Ref Expression
fcoreslem2 (𝜑 → ran 𝑋 = 𝐸)

Proof of Theorem fcoreslem2
StepHypRef Expression
1 df-ima 5713 . . 3 (𝐹𝑃) = ran (𝐹𝑃)
2 fcores.x . . . . . 6 𝑋 = (𝐹𝑃)
32rneqi 5962 . . . . 5 ran 𝑋 = ran (𝐹𝑃)
43eqcomi 2749 . . . 4 ran (𝐹𝑃) = ran 𝑋
54a1i 11 . . 3 (𝜑 → ran (𝐹𝑃) = ran 𝑋)
61, 5eqtr2id 2793 . 2 (𝜑 → ran 𝑋 = (𝐹𝑃))
7 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
8 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
9 fcores.p . . . 4 𝑃 = (𝐹𝐶)
107, 8, 9fcoreslem1 46978 . . 3 (𝜑𝑃 = (𝐹𝐸))
1110imaeq2d 6089 . 2 (𝜑 → (𝐹𝑃) = (𝐹 “ (𝐹𝐸)))
127ffund 6751 . . . 4 (𝜑 → Fun 𝐹)
13 funimacnv 6659 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
1412, 13syl 17 . . 3 (𝜑 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
15 inss1 4258 . . . . . 6 (ran 𝐹𝐶) ⊆ ran 𝐹
168, 15eqsstri 4043 . . . . 5 𝐸 ⊆ ran 𝐹
1716a1i 11 . . . 4 (𝜑𝐸 ⊆ ran 𝐹)
18 dfss2 3994 . . . 4 (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸)
1917, 18sylib 218 . . 3 (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸)
2014, 19eqtrd 2780 . 2 (𝜑 → (𝐹 “ (𝐹𝐸)) = 𝐸)
216, 11, 203eqtrd 2784 1 (𝜑 → ran 𝑋 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  wss 3976  ccnv 5699  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fcoreslem4  46981  fcoresf1  46984
  Copyright terms: Public domain W3C validator