Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem2 Structured version   Visualization version   GIF version

Theorem fcoreslem2 46589
Description: Lemma 2 for fcores 46592. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
Assertion
Ref Expression
fcoreslem2 (𝜑 → ran 𝑋 = 𝐸)

Proof of Theorem fcoreslem2
StepHypRef Expression
1 df-ima 5691 . . 3 (𝐹𝑃) = ran (𝐹𝑃)
2 fcores.x . . . . . 6 𝑋 = (𝐹𝑃)
32rneqi 5939 . . . . 5 ran 𝑋 = ran (𝐹𝑃)
43eqcomi 2734 . . . 4 ran (𝐹𝑃) = ran 𝑋
54a1i 11 . . 3 (𝜑 → ran (𝐹𝑃) = ran 𝑋)
61, 5eqtr2id 2778 . 2 (𝜑 → ran 𝑋 = (𝐹𝑃))
7 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
8 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
9 fcores.p . . . 4 𝑃 = (𝐹𝐶)
107, 8, 9fcoreslem1 46588 . . 3 (𝜑𝑃 = (𝐹𝐸))
1110imaeq2d 6064 . 2 (𝜑 → (𝐹𝑃) = (𝐹 “ (𝐹𝐸)))
127ffund 6727 . . . 4 (𝜑 → Fun 𝐹)
13 funimacnv 6635 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
1412, 13syl 17 . . 3 (𝜑 → (𝐹 “ (𝐹𝐸)) = (𝐸 ∩ ran 𝐹))
15 inss1 4227 . . . . . 6 (ran 𝐹𝐶) ⊆ ran 𝐹
168, 15eqsstri 4011 . . . . 5 𝐸 ⊆ ran 𝐹
1716a1i 11 . . . 4 (𝜑𝐸 ⊆ ran 𝐹)
18 dfss2 3962 . . . 4 (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸)
1917, 18sylib 217 . . 3 (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸)
2014, 19eqtrd 2765 . 2 (𝜑 → (𝐹 “ (𝐹𝐸)) = 𝐸)
216, 11, 203eqtrd 2769 1 (𝜑 → ran 𝑋 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cin 3943  wss 3944  ccnv 5677  ran crn 5679  cres 5680  cima 5681  Fun wfun 6543  wf 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-fun 6551  df-fn 6552  df-f 6553
This theorem is referenced by:  fcoreslem4  46591  fcoresf1  46594
  Copyright terms: Public domain W3C validator