![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fcores 44901. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem2 | ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5627 | . . 3 ⊢ (𝐹 “ 𝑃) = ran (𝐹 ↾ 𝑃) | |
2 | fcores.x | . . . . . 6 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
3 | 2 | rneqi 5872 | . . . . 5 ⊢ ran 𝑋 = ran (𝐹 ↾ 𝑃) |
4 | 3 | eqcomi 2745 | . . . 4 ⊢ ran (𝐹 ↾ 𝑃) = ran 𝑋 |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝑃) = ran 𝑋) |
6 | 1, 5 | eqtr2id 2789 | . 2 ⊢ (𝜑 → ran 𝑋 = (𝐹 “ 𝑃)) |
7 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
9 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
10 | 7, 8, 9 | fcoreslem1 44897 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
11 | 10 | imaeq2d 5993 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑃) = (𝐹 “ (◡𝐹 “ 𝐸))) |
12 | 7 | ffund 6649 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
13 | funimacnv 6559 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) |
15 | inss1 4174 | . . . . . 6 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ ran 𝐹 | |
16 | 8, 15 | eqsstri 3965 | . . . . 5 ⊢ 𝐸 ⊆ ran 𝐹 |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ran 𝐹) |
18 | df-ss 3914 | . . . 4 ⊢ (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸) | |
19 | 17, 18 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸) |
20 | 14, 19 | eqtrd 2776 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = 𝐸) |
21 | 6, 11, 20 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∩ cin 3896 ⊆ wss 3897 ◡ccnv 5613 ran crn 5615 ↾ cres 5616 “ cima 5617 Fun wfun 6467 ⟶wf 6469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6475 df-fn 6476 df-f 6477 |
This theorem is referenced by: fcoreslem4 44900 fcoresf1 44903 |
Copyright terms: Public domain | W3C validator |