![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fcores 47017. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem2 | ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5702 | . . 3 ⊢ (𝐹 “ 𝑃) = ran (𝐹 ↾ 𝑃) | |
2 | fcores.x | . . . . . 6 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
3 | 2 | rneqi 5951 | . . . . 5 ⊢ ran 𝑋 = ran (𝐹 ↾ 𝑃) |
4 | 3 | eqcomi 2744 | . . . 4 ⊢ ran (𝐹 ↾ 𝑃) = ran 𝑋 |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝑃) = ran 𝑋) |
6 | 1, 5 | eqtr2id 2788 | . 2 ⊢ (𝜑 → ran 𝑋 = (𝐹 “ 𝑃)) |
7 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
9 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
10 | 7, 8, 9 | fcoreslem1 47013 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
11 | 10 | imaeq2d 6080 | . 2 ⊢ (𝜑 → (𝐹 “ 𝑃) = (𝐹 “ (◡𝐹 “ 𝐸))) |
12 | 7 | ffund 6741 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
13 | funimacnv 6649 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = (𝐸 ∩ ran 𝐹)) |
15 | inss1 4245 | . . . . . 6 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ ran 𝐹 | |
16 | 8, 15 | eqsstri 4030 | . . . . 5 ⊢ 𝐸 ⊆ ran 𝐹 |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ ran 𝐹) |
18 | dfss2 3981 | . . . 4 ⊢ (𝐸 ⊆ ran 𝐹 ↔ (𝐸 ∩ ran 𝐹) = 𝐸) | |
19 | 17, 18 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐸 ∩ ran 𝐹) = 𝐸) |
20 | 14, 19 | eqtrd 2775 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐸)) = 𝐸) |
21 | 6, 11, 20 | 3eqtrd 2779 | 1 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3962 ⊆ wss 3963 ◡ccnv 5688 ran crn 5690 ↾ cres 5691 “ cima 5692 Fun wfun 6557 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: fcoreslem4 47016 fcoresf1 47019 |
Copyright terms: Public domain | W3C validator |