MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvelrnd Structured version   Visualization version   GIF version

Theorem fnfvelrnd 7092
Description: A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
fnfvelrnd.1 (𝜑𝐹 Fn 𝐴)
fnfvelrnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnfvelrnd (𝜑 → (𝐹𝐵) ∈ ran 𝐹)

Proof of Theorem fnfvelrnd
StepHypRef Expression
1 fnfvelrnd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfvelrnd.2 . 2 (𝜑𝐵𝐴)
3 fnfvelrn 7090 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
41, 2, 3syl2anc 583 1 (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  ran crn 5679   Fn wfn 6543  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556
This theorem is referenced by:  ghmquskerlem3  19236  ghmqusker  19237  noseqrdglem  28177  ghmqusnsg  33131  limsupgtlem  45165
  Copyright terms: Public domain W3C validator