MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvelrnd Structured version   Visualization version   GIF version

Theorem fnfvelrnd 7023
Description: A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
fnfvelrnd.1 (𝜑𝐹 Fn 𝐴)
fnfvelrnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnfvelrnd (𝜑 → (𝐹𝐵) ∈ ran 𝐹)

Proof of Theorem fnfvelrnd
StepHypRef Expression
1 fnfvelrnd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfvelrnd.2 . 2 (𝜑𝐵𝐴)
3 fnfvelrn 7021 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  ran crn 5622   Fn wfn 6483  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-fv 6496
This theorem is referenced by:  ghmqusnsg  19198  ghmquskerlem3  19202  ghmqusker  19203  noseqrdglem  28238  esplyind  33615  ssmapsn  45340  limsupgtlem  45902
  Copyright terms: Public domain W3C validator