MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvelrnd Structured version   Visualization version   GIF version

Theorem fnfvelrnd 7020
Description: A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
fnfvelrnd.1 (𝜑𝐹 Fn 𝐴)
fnfvelrnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnfvelrnd (𝜑 → (𝐹𝐵) ∈ ran 𝐹)

Proof of Theorem fnfvelrnd
StepHypRef Expression
1 fnfvelrnd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfvelrnd.2 . 2 (𝜑𝐵𝐴)
3 fnfvelrn 7018 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ran crn 5624   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  ghmqusnsg  19179  ghmquskerlem3  19183  ghmqusker  19184  noseqrdglem  28222  ssmapsn  45194  limsupgtlem  45759
  Copyright terms: Public domain W3C validator