MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvelrnd Structured version   Visualization version   GIF version

Theorem fnfvelrnd 7083
Description: A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
fnfvelrnd.1 (𝜑𝐹 Fn 𝐴)
fnfvelrnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnfvelrnd (𝜑 → (𝐹𝐵) ∈ ran 𝐹)

Proof of Theorem fnfvelrnd
StepHypRef Expression
1 fnfvelrnd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfvelrnd.2 . 2 (𝜑𝐵𝐴)
3 fnfvelrn 7081 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
41, 2, 3syl2anc 582 1 (𝜑 → (𝐹𝐵) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  ran crn 5676   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  ghmquskerlem3  32805  ghmqusker  32806  limsupgtlem  44791
  Copyright terms: Public domain W3C validator