| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 2 | | eqid 2736 |
. 2
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 3 | | eqid 2736 |
. 2
⊢
(+g‘𝑄) = (+g‘𝑄) |
| 4 | | eqid 2736 |
. 2
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 5 | | ghmqusker.k |
. . . 4
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 6 | | ghmqusker.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 7 | | ghmqusker.1 |
. . . . . 6
⊢ 0 =
(0g‘𝐻) |
| 8 | 7 | ghmker 19230 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
| 9 | 6, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
| 10 | 5, 9 | eqeltrid 2839 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
| 11 | | ghmqusker.q |
. . . 4
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| 12 | 11 | qusgrp 19174 |
. . 3
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp) |
| 13 | 10, 12 | syl 17 |
. 2
⊢ (𝜑 → 𝑄 ∈ Grp) |
| 14 | | ghmrn 19217 |
. . 3
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) |
| 15 | | subgrcl 19119 |
. . 3
⊢ (ran
𝐹 ∈
(SubGrp‘𝐻) →
𝐻 ∈
Grp) |
| 16 | 6, 14, 15 | 3syl 18 |
. 2
⊢ (𝜑 → 𝐻 ∈ Grp) |
| 17 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 18 | 17 | imaexd 7917 |
. . . 4
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → (𝐹 “ 𝑞) ∈ V) |
| 19 | 18 | uniexd 7741 |
. . 3
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → ∪
(𝐹 “ 𝑞) ∈ V) |
| 20 | | ghmqusker.j |
. . . 4
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
| 21 | 20 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞))) |
| 22 | | simpr 484 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 23 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 24 | 23, 2 | ghmf 19208 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 25 | 6, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
| 26 | 25 | frnd 6719 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐻)) |
| 27 | 26 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ran 𝐹 ⊆ (Base‘𝐻)) |
| 28 | 25 | ffnd 6712 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
| 29 | 28 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 Fn (Base‘𝐺)) |
| 30 | 11 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
| 31 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 32 | | ovexd 7445 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
| 33 | | ghmgrp1 19206 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
| 34 | 6, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 35 | 30, 31, 32, 34 | qusbas 17564 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 36 | | nsgsubg 19146 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 37 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
| 38 | 23, 37 | eqger 19166 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 39 | 10, 36, 38 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 40 | 39 | qsss 8797 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺)) |
| 41 | 35, 40 | eqsstrrd 3999 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
| 42 | 41 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
| 43 | 42 | elpwid 4589 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
| 44 | 43 | sselda 3963 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) → 𝑥 ∈ (Base‘𝐺)) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ (Base‘𝐺)) |
| 46 | 29, 45 | fnfvelrnd 7077 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 47 | 27, 46 | sseldd 3964 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ (Base‘𝐻)) |
| 48 | 22, 47 | eqeltrd 2835 |
. . . 4
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
| 49 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 50 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
| 51 | 7, 49, 5, 11, 20, 50 | ghmquskerlem2 19273 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 52 | 48, 51 | r19.29a 3149 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
| 53 | 19, 21, 52 | fmpt2d 7119 |
. 2
⊢ (𝜑 → 𝐽:(Base‘𝑄)⟶(Base‘𝐻)) |
| 54 | 39 | ad6antr 736 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 55 | 50 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ (Base‘𝑄)) |
| 56 | 35 | ad6antr 736 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 57 | 55, 56 | eleqtrrd 2838 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
| 58 | | simp-4r 783 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ 𝑟) |
| 59 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
| 60 | 54, 57, 58, 59 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
| 61 | | simp-5r 785 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ (Base‘𝑄)) |
| 62 | 61, 56 | eleqtrrd 2838 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
| 63 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ 𝑠) |
| 64 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑦 ∈ 𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝐾)) |
| 65 | 54, 62, 63, 64 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝐾)) |
| 66 | 60, 65 | oveq12d 7428 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(+g‘𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝐾)(+g‘𝑄)[𝑦](𝐺 ~QG 𝐾))) |
| 67 | 10 | ad6antr 736 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐾 ∈ (NrmSGrp‘𝐺)) |
| 68 | 43 | ad5antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ⊆ (Base‘𝐺)) |
| 69 | 68, 58 | sseldd 3964 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ (Base‘𝐺)) |
| 70 | 41 | sselda 3963 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺)) |
| 71 | 70 | elpwid 4589 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
| 72 | 71 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
| 73 | 72 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ⊆ (Base‘𝐺)) |
| 74 | 73, 63 | sseldd 3964 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ (Base‘𝐺)) |
| 75 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 76 | 11, 23, 75, 3 | qusadd 19176 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾)(+g‘𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) |
| 77 | 67, 69, 74, 76 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ([𝑥](𝐺 ~QG 𝐾)(+g‘𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) |
| 78 | 66, 77 | eqtrd 2771 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(+g‘𝑄)𝑠) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) |
| 79 | 78 | fveq2d 6885 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = (𝐽‘[(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾))) |
| 80 | 6 | ad6antr 736 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 81 | 80, 33 | syl 17 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ Grp) |
| 82 | 23, 75, 81, 69, 74 | grpcld 18935 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 83 | 7, 80, 5, 11, 20, 82 | ghmquskerlem1 19271 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑥(+g‘𝐺)𝑦))) |
| 84 | 23, 75, 4 | ghmlin 19209 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g‘𝐺)𝑦)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
| 85 | 80, 69, 74, 84 | syl3anc 1373 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐹‘(𝑥(+g‘𝐺)𝑦)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
| 86 | 79, 83, 85 | 3eqtrd 2775 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
| 87 | | simpllr 775 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 88 | | simpr 484 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑠) = (𝐹‘𝑦)) |
| 89 | 87, 88 | oveq12d 7428 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
| 90 | 86, 89 | eqtr4d 2774 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
| 91 | 6 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 92 | | simpllr 775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑠 ∈ (Base‘𝑄)) |
| 93 | 7, 91, 5, 11, 20, 92 | ghmquskerlem2 19273 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ∃𝑦 ∈ 𝑠 (𝐽‘𝑠) = (𝐹‘𝑦)) |
| 94 | 90, 93 | r19.29a 3149 |
. . . 4
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
| 95 | 51 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 96 | 94, 95 | r19.29a 3149 |
. . 3
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
| 97 | 96 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
| 98 | 1, 2, 3, 4, 13, 16, 53, 97 | isghmd 19213 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |