MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerlem3 Structured version   Visualization version   GIF version

Theorem ghmquskerlem3 19236
Description: The mapping 𝐻 induced by a surjective group homomorphism 𝐹 from the quotient group 𝑄 over 𝐹's kernel 𝐾 is a group isomorphism. In this case, one says that 𝐹 factors through 𝑄, which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
ghmquskerlem3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem3
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2725 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2725 . 2 (+g𝑄) = (+g𝑄)
4 eqid 2725 . 2 (+g𝐻) = (+g𝐻)
5 ghmqusker.k . . . 4 𝐾 = (𝐹 “ { 0 })
6 ghmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmqusker.1 . . . . . 6 0 = (0g𝐻)
87ghmker 19195 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
96, 8syl 17 . . . 4 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
105, 9eqeltrid 2829 . . 3 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
11 ghmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1211qusgrp 19140 . . 3 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
1310, 12syl 17 . 2 (𝜑𝑄 ∈ Grp)
14 ghmrn 19182 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
15 subgrcl 19085 . . 3 (ran 𝐹 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
166, 14, 153syl 18 . 2 (𝜑𝐻 ∈ Grp)
176adantr 479 . . . . 5 ((𝜑𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1817imaexd 7918 . . . 4 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
1918uniexd 7742 . . 3 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
20 ghmqusker.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2120a1i 11 . . 3 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
22 simpr 483 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
23 eqid 2725 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
2423, 2ghmf 19173 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
256, 24syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2625frnd 6725 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (Base‘𝐻))
2726ad3antrrr 728 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ran 𝐹 ⊆ (Base‘𝐻))
2825ffnd 6718 . . . . . . . 8 (𝜑𝐹 Fn (Base‘𝐺))
2928ad3antrrr 728 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 Fn (Base‘𝐺))
3011a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
31 eqidd 2726 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
32 ovexd 7448 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
33 ghmgrp1 19171 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
346, 33syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
3530, 31, 32, 34qusbas 17521 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
36 nsgsubg 19112 . . . . . . . . . . . . . 14 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
37 eqid 2725 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
3823, 37eqger 19132 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3910, 36, 383syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4039qsss 8790 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
4135, 40eqsstrrd 4013 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
4241sselda 3973 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
4342elpwid 4608 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
4443sselda 3973 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) → 𝑥 ∈ (Base‘𝐺))
4544adantr 479 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
4629, 45fnfvelrnd 7085 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ ran 𝐹)
4727, 46sseldd 3974 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ (Base‘𝐻))
4822, 47eqeltrd 2825 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) ∈ (Base‘𝐻))
496adantr 479 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
50 simpr 483 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
517, 49, 5, 11, 20, 50ghmquskerlem2 19235 . . . 4 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
5248, 51r19.29a 3152 . . 3 ((𝜑𝑟 ∈ (Base‘𝑄)) → (𝐽𝑟) ∈ (Base‘𝐻))
5319, 21, 52fmpt2d 7127 . 2 (𝜑𝐽:(Base‘𝑄)⟶(Base‘𝐻))
5439ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
5550ad5antr 732 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
5635ad6antr 734 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
5755, 56eleqtrrd 2828 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
58 simp-4r 782 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
59 qsel 8808 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
6054, 57, 58, 59syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
61 simp-5r 784 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
6261, 56eleqtrrd 2828 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
63 simplr 767 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
64 qsel 8808 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
6554, 62, 63, 64syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
6660, 65oveq12d 7431 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)))
6710ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐾 ∈ (NrmSGrp‘𝐺))
6843ad5antr 732 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
6968, 58sseldd 3974 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
7041sselda 3973 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
7170elpwid 4608 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7271adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7372ad4antr 730 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
7473, 63sseldd 3974 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
75 eqid 2725 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
7611, 23, 75, 3qusadd 19142 . . . . . . . . . 10 ((𝐾 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7767, 69, 74, 76syl3anc 1368 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7866, 77eqtrd 2765 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7978fveq2d 6894 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾)))
806ad6antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8180, 33syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Grp)
8223, 75, 81, 69, 74grpcld 18903 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
837, 80, 5, 11, 20, 82ghmquskerlem1 19233 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑥(+g𝐺)𝑦)))
8423, 75, 4ghmlin 19174 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8580, 69, 74, 84syl3anc 1368 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8679, 83, 853eqtrd 2769 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
87 simpllr 774 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
88 simpr 483 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
8987, 88oveq12d 7431 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(+g𝐻)(𝐽𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
9086, 89eqtr4d 2768 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
916ad4antr 730 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
92 simpllr 774 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
937, 91, 5, 11, 20, 92ghmquskerlem2 19235 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9490, 93r19.29a 3152 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9551adantr 479 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
9694, 95r19.29a 3152 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9796anasss 465 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
981, 2, 3, 4, 13, 16, 53, 97isghmd 19178 1 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3060  Vcvv 3463  wss 3941  𝒫 cpw 4599  {csn 4625   cuni 4904  cmpt 5227  ccnv 5672  ran crn 5674  cima 5676   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7413   Er wer 8715  [cec 8716   / cqs 8717  Basecbs 17174  +gcplusg 17227  0gc0g 17415   /s cqus 17481  Grpcgrp 18889  SubGrpcsubg 19074  NrmSGrpcnsg 19075   ~QG cqg 19076   GrpHom cghm 19166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-ec 8720  df-qs 8724  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17417  df-imas 17484  df-qus 17485  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-subg 19077  df-nsg 19078  df-eqg 19079  df-ghm 19167
This theorem is referenced by:  ghmqusker  19237  rhmquskerlem  33185
  Copyright terms: Public domain W3C validator