MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerlem3 Structured version   Visualization version   GIF version

Theorem ghmquskerlem3 19218
Description: The mapping 𝐻 induced by a surjective group homomorphism 𝐹 from the quotient group 𝑄 over 𝐹's kernel 𝐾 is a group isomorphism. In this case, one says that 𝐹 factors through 𝑄, which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
ghmquskerlem3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem3
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2729 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2729 . 2 (+g𝑄) = (+g𝑄)
4 eqid 2729 . 2 (+g𝐻) = (+g𝐻)
5 ghmqusker.k . . . 4 𝐾 = (𝐹 “ { 0 })
6 ghmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmqusker.1 . . . . . 6 0 = (0g𝐻)
87ghmker 19174 . . . . 5 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
96, 8syl 17 . . . 4 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
105, 9eqeltrid 2832 . . 3 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
11 ghmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1211qusgrp 19118 . . 3 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
1310, 12syl 17 . 2 (𝜑𝑄 ∈ Grp)
14 ghmrn 19161 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
15 subgrcl 19063 . . 3 (ran 𝐹 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
166, 14, 153syl 18 . 2 (𝜑𝐻 ∈ Grp)
176adantr 480 . . . . 5 ((𝜑𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1817imaexd 7892 . . . 4 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
1918uniexd 7718 . . 3 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
20 ghmqusker.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2120a1i 11 . . 3 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
22 simpr 484 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
23 eqid 2729 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
2423, 2ghmf 19152 . . . . . . . . 9 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
256, 24syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2625frnd 6696 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (Base‘𝐻))
2726ad3antrrr 730 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ran 𝐹 ⊆ (Base‘𝐻))
2825ffnd 6689 . . . . . . . 8 (𝜑𝐹 Fn (Base‘𝐺))
2928ad3antrrr 730 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 Fn (Base‘𝐺))
3011a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
31 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
32 ovexd 7422 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
33 ghmgrp1 19150 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
346, 33syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Grp)
3530, 31, 32, 34qusbas 17508 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
36 nsgsubg 19090 . . . . . . . . . . . . . 14 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
37 eqid 2729 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
3823, 37eqger 19110 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3910, 36, 383syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4039qsss 8749 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
4135, 40eqsstrrd 3982 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
4241sselda 3946 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
4342elpwid 4572 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
4443sselda 3946 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) → 𝑥 ∈ (Base‘𝐺))
4544adantr 480 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
4629, 45fnfvelrnd 7054 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ ran 𝐹)
4727, 46sseldd 3947 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ (Base‘𝐻))
4822, 47eqeltrd 2828 . . . 4 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) ∈ (Base‘𝐻))
496adantr 480 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
50 simpr 484 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
517, 49, 5, 11, 20, 50ghmquskerlem2 19217 . . . 4 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
5248, 51r19.29a 3141 . . 3 ((𝜑𝑟 ∈ (Base‘𝑄)) → (𝐽𝑟) ∈ (Base‘𝐻))
5319, 21, 52fmpt2d 7096 . 2 (𝜑𝐽:(Base‘𝑄)⟶(Base‘𝐻))
5439ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
5550ad5antr 734 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
5635ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
5755, 56eleqtrrd 2831 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
58 simp-4r 783 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
59 qsel 8769 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
6054, 57, 58, 59syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
61 simp-5r 785 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
6261, 56eleqtrrd 2831 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
63 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
64 qsel 8769 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
6554, 62, 63, 64syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
6660, 65oveq12d 7405 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)))
6710ad6antr 736 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐾 ∈ (NrmSGrp‘𝐺))
6843ad5antr 734 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
6968, 58sseldd 3947 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
7041sselda 3946 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
7170elpwid 4572 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7271adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7372ad4antr 732 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
7473, 63sseldd 3947 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
75 eqid 2729 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
7611, 23, 75, 3qusadd 19120 . . . . . . . . . 10 ((𝐾 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7767, 69, 74, 76syl3anc 1373 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7866, 77eqtrd 2764 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7978fveq2d 6862 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾)))
806ad6antr 736 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8180, 33syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Grp)
8223, 75, 81, 69, 74grpcld 18879 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
837, 80, 5, 11, 20, 82ghmquskerlem1 19215 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑥(+g𝐺)𝑦)))
8423, 75, 4ghmlin 19153 . . . . . . . 8 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8580, 69, 74, 84syl3anc 1373 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8679, 83, 853eqtrd 2768 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
87 simpllr 775 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
88 simpr 484 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
8987, 88oveq12d 7405 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(+g𝐻)(𝐽𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
9086, 89eqtr4d 2767 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
916ad4antr 732 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
92 simpllr 775 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
937, 91, 5, 11, 20, 92ghmquskerlem2 19217 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9490, 93r19.29a 3141 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9551adantr 480 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
9694, 95r19.29a 3141 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9796anasss 466 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
981, 2, 3, 4, 13, 16, 53, 97isghmd 19157 1 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387   Er wer 8668  [cec 8669   / cqs 8670  Basecbs 17179  +gcplusg 17220  0gc0g 17402   /s cqus 17468  Grpcgrp 18865  SubGrpcsubg 19052  NrmSGrpcnsg 19053   ~QG cqg 19054   GrpHom cghm 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145
This theorem is referenced by:  ghmqusker  19219  rhmquskerlem  33396
  Copyright terms: Public domain W3C validator