Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnmptif Structured version   Visualization version   GIF version

Theorem fnmptif 43843
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
fnmptif.1 𝑥𝐴
fnmptif.2 𝐵 ∈ V
fnmptif.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmptif 𝐹 Fn 𝐴

Proof of Theorem fnmptif
StepHypRef Expression
1 fnmptif.2 . . . 4 𝐵 ∈ V
21rgenw 3066 . . 3 𝑥𝐴 𝐵 ∈ V
3 fnmptif.1 . . . 4 𝑥𝐴
43mptfnf 6675 . . 3 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
52, 4mpbi 229 . 2 (𝑥𝐴𝐵) Fn 𝐴
6 fnmptif.3 . . 3 𝐹 = (𝑥𝐴𝐵)
76fneq1i 6638 . 2 (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴)
85, 7mpbir 230 1 𝐹 Fn 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  wnfc 2884  wral 3062  Vcvv 3475  cmpt 5227   Fn wfn 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-fun 6537  df-fn 6538
This theorem is referenced by:  dmmptif  43844
  Copyright terms: Public domain W3C validator