Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fconst7 Structured version   Visualization version   GIF version

Theorem fconst7 44431
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fconst7.p 𝑥𝜑
fconst7.x 𝑥𝐹
fconst7.f (𝜑𝐹 Fn 𝐴)
fconst7.b (𝜑𝐵𝑉)
fconst7.e ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
fconst7 (𝜑𝐹 = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fconst7
StepHypRef Expression
1 fconst7.f . . 3 (𝜑𝐹 Fn 𝐴)
2 fconst7.p . . . 4 𝑥𝜑
3 fconst7.e . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4 fvexd 6906 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ V)
53, 4eqeltrrd 2833 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
6 snidg 4662 . . . . . 6 (𝐵 ∈ V → 𝐵 ∈ {𝐵})
75, 6syl 17 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝐵})
83, 7eqeltrd 2832 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ {𝐵})
92, 8ralrimia 3254 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵})
10 nfcv 2902 . . . 4 𝑥𝐴
11 nfcv 2902 . . . 4 𝑥{𝐵}
12 fconst7.x . . . 4 𝑥𝐹
1310, 11, 12ffnfvf 7121 . . 3 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
141, 9, 13sylanbrc 582 . 2 (𝜑𝐹:𝐴⟶{𝐵})
15 fconst7.b . . 3 (𝜑𝐵𝑉)
16 fconst2g 7206 . . 3 (𝐵𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
1715, 16syl 17 . 2 (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
1814, 17mpbid 231 1 (𝜑𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wnf 1784  wcel 2105  wnfc 2882  wral 3060  Vcvv 3473  {csn 4628   × cxp 5674   Fn wfn 6538  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by:  xlimconst  45003
  Copyright terms: Public domain W3C validator