![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fconst7 | Structured version Visualization version GIF version |
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fconst7.p | ⊢ Ⅎ𝑥𝜑 |
fconst7.x | ⊢ Ⅎ𝑥𝐹 |
fconst7.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fconst7.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fconst7.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Ref | Expression |
---|---|
fconst7 | ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst7.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fconst7.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | fconst7.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
4 | fvexd 6935 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | |
5 | 3, 4 | eqeltrrd 2845 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
6 | snidg 4682 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵}) |
8 | 3, 7 | eqeltrd 2844 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ {𝐵}) |
9 | 2, 8 | ralrimia 3264 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵}) |
10 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
11 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥{𝐵} | |
12 | fconst7.x | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
13 | 10, 11, 12 | ffnfvf 7154 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) |
14 | 1, 9, 13 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶{𝐵}) |
15 | fconst7.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
16 | fconst2g 7240 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
18 | 14, 17 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 Vcvv 3488 {csn 4648 × cxp 5698 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: xlimconst 45746 |
Copyright terms: Public domain | W3C validator |