Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fconst7 Structured version   Visualization version   GIF version

Theorem fconst7 45255
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fconst7.p 𝑥𝜑
fconst7.x 𝑥𝐹
fconst7.f (𝜑𝐹 Fn 𝐴)
fconst7.b (𝜑𝐵𝑉)
fconst7.e ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
fconst7 (𝜑𝐹 = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fconst7
StepHypRef Expression
1 fconst7.f . . 3 (𝜑𝐹 Fn 𝐴)
2 fconst7.p . . . 4 𝑥𝜑
3 fconst7.e . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4 fvexd 6896 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ V)
53, 4eqeltrrd 2836 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
6 snidg 4641 . . . . . 6 (𝐵 ∈ V → 𝐵 ∈ {𝐵})
75, 6syl 17 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝐵})
83, 7eqeltrd 2835 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ {𝐵})
92, 8ralrimia 3245 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵})
10 nfcv 2899 . . . 4 𝑥𝐴
11 nfcv 2899 . . . 4 𝑥{𝐵}
12 fconst7.x . . . 4 𝑥𝐹
1310, 11, 12ffnfvf 7115 . . 3 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
141, 9, 13sylanbrc 583 . 2 (𝜑𝐹:𝐴⟶{𝐵})
15 fconst7.b . . 3 (𝜑𝐵𝑉)
16 fconst2g 7200 . . 3 (𝐵𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
1715, 16syl 17 . 2 (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
1814, 17mpbid 232 1 (𝜑𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  wral 3052  Vcvv 3464  {csn 4606   × cxp 5657   Fn wfn 6531  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  xlimconst  45821
  Copyright terms: Public domain W3C validator