Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fconst7 Structured version   Visualization version   GIF version

Theorem fconst7 41106
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fconst7.p 𝑥𝜑
fconst7.x 𝑥𝐹
fconst7.f (𝜑𝐹 Fn 𝐴)
fconst7.b (𝜑𝐵𝑉)
fconst7.e ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
fconst7 (𝜑𝐹 = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fconst7
StepHypRef Expression
1 fconst7.f . . 3 (𝜑𝐹 Fn 𝐴)
2 fconst7.p . . . 4 𝑥𝜑
3 fconst7.e . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4 fvexd 6558 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ V)
53, 4eqeltrrd 2884 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
6 snidg 4508 . . . . . 6 (𝐵 ∈ V → 𝐵 ∈ {𝐵})
75, 6syl 17 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝐵})
83, 7eqeltrd 2883 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ {𝐵})
92, 8ralrimia 40963 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵})
10 nfcv 2949 . . . 4 𝑥𝐴
11 nfcv 2949 . . . 4 𝑥{𝐵}
12 fconst7.x . . . 4 𝑥𝐹
1310, 11, 12ffnfvf 6751 . . 3 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
141, 9, 13sylanbrc 583 . 2 (𝜑𝐹:𝐴⟶{𝐵})
15 fconst7.b . . 3 (𝜑𝐵𝑉)
16 fconst2g 6837 . . 3 (𝐵𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
1715, 16syl 17 . 2 (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
1814, 17mpbid 233 1 (𝜑𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  wnfc 2933  wral 3105  Vcvv 3437  {csn 4476   × cxp 5446   Fn wfn 6225  wf 6226  cfv 6230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-fv 6238
This theorem is referenced by:  xlimconst  41674
  Copyright terms: Public domain W3C validator