![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fconst7 | Structured version Visualization version GIF version |
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fconst7.p | ⊢ Ⅎ𝑥𝜑 |
fconst7.x | ⊢ Ⅎ𝑥𝐹 |
fconst7.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fconst7.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fconst7.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Ref | Expression |
---|---|
fconst7 | ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst7.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fconst7.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | fconst7.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
4 | fvexd 6558 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | |
5 | 3, 4 | eqeltrrd 2884 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
6 | snidg 4508 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵}) |
8 | 3, 7 | eqeltrd 2883 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ {𝐵}) |
9 | 2, 8 | ralrimia 40963 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵}) |
10 | nfcv 2949 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
11 | nfcv 2949 | . . . 4 ⊢ Ⅎ𝑥{𝐵} | |
12 | fconst7.x | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
13 | 10, 11, 12 | ffnfvf 6751 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) |
14 | 1, 9, 13 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶{𝐵}) |
15 | fconst7.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
16 | fconst2g 6837 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
18 | 14, 17 | mpbid 233 | 1 ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 Ⅎwnf 1765 ∈ wcel 2081 Ⅎwnfc 2933 ∀wral 3105 Vcvv 3437 {csn 4476 × cxp 5446 Fn wfn 6225 ⟶wf 6226 ‘cfv 6230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-fv 6238 |
This theorem is referenced by: xlimconst 41674 |
Copyright terms: Public domain | W3C validator |