| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fconst7 | Structured version Visualization version GIF version | ||
| Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fconst7.p | ⊢ Ⅎ𝑥𝜑 |
| fconst7.x | ⊢ Ⅎ𝑥𝐹 |
| fconst7.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fconst7.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fconst7.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| Ref | Expression |
|---|---|
| fconst7 | ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst7.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fconst7.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | fconst7.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 4 | fvexd 6873 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | |
| 5 | 3, 4 | eqeltrrd 2829 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
| 6 | snidg 4624 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵}) |
| 8 | 3, 7 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ {𝐵}) |
| 9 | 2, 8 | ralrimia 3236 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵}) |
| 10 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 11 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥{𝐵} | |
| 12 | fconst7.x | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 13 | 10, 11, 12 | ffnfvf 7092 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) |
| 14 | 1, 9, 13 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶{𝐵}) |
| 15 | fconst7.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 16 | fconst2g 7177 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| 18 | 14, 17 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 Vcvv 3447 {csn 4589 × cxp 5636 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: xlimconst 45823 |
| Copyright terms: Public domain | W3C validator |