Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fconst7 | Structured version Visualization version GIF version |
Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fconst7.p | ⊢ Ⅎ𝑥𝜑 |
fconst7.x | ⊢ Ⅎ𝑥𝐹 |
fconst7.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fconst7.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fconst7.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Ref | Expression |
---|---|
fconst7 | ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst7.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fconst7.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | fconst7.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
4 | fvexd 6732 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | |
5 | 3, 4 | eqeltrrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
6 | snidg 4575 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵}) |
8 | 3, 7 | eqeltrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ {𝐵}) |
9 | 2, 8 | ralrimia 3406 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵}) |
10 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
11 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥{𝐵} | |
12 | fconst7.x | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
13 | 10, 11, 12 | ffnfvf 6936 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) |
14 | 1, 9, 13 | sylanbrc 586 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶{𝐵}) |
15 | fconst7.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
16 | fconst2g 7018 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
18 | 14, 17 | mpbid 235 | 1 ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2110 Ⅎwnfc 2884 ∀wral 3061 Vcvv 3408 {csn 4541 × cxp 5549 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 |
This theorem is referenced by: xlimconst 43041 |
Copyright terms: Public domain | W3C validator |