| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fconst7 | Structured version Visualization version GIF version | ||
| Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fconst7.p | ⊢ Ⅎ𝑥𝜑 |
| fconst7.x | ⊢ Ⅎ𝑥𝐹 |
| fconst7.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fconst7.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fconst7.e | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| Ref | Expression |
|---|---|
| fconst7 | ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst7.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fconst7.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | fconst7.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 4 | fvexd 6837 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) | |
| 5 | 3, 4 | eqeltrrd 2832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
| 6 | snidg 4613 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐵}) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵}) |
| 8 | 3, 7 | eqeltrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ {𝐵}) |
| 9 | 2, 8 | ralrimia 3231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵}) |
| 10 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 11 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥{𝐵} | |
| 12 | fconst7.x | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 13 | 10, 11, 12 | ffnfvf 7053 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) |
| 14 | 1, 9, 13 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶{𝐵}) |
| 15 | fconst7.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 16 | fconst2g 7137 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) |
| 18 | 14, 17 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 Vcvv 3436 {csn 4576 × cxp 5614 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: xlimconst 45862 |
| Copyright terms: Public domain | W3C validator |