MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvop Structured version   Visualization version   GIF version

Theorem funfvop 7050
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
funfvop ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)

Proof of Theorem funfvop
StepHypRef Expression
1 eqid 2734 . 2 (𝐹𝐴) = (𝐹𝐴)
2 funopfvb 6943 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = (𝐹𝐴) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
31, 2mpbii 233 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4612  dom cdm 5665  Fun wfun 6535  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fn 6544  df-fv 6549
This theorem is referenced by:  funfvbrb  7051  fvimacnv  7053  fnopfv  7075  fvelrn  7076  dff3  7100  fnsnbg  7166  fnsnbOLD  7168  funfvima3  7238  fprresex  8317  wfrlem17OLD  8347  tfrlem9a  8408  fundmen  9053  adj1  31881  fgreu  32618
  Copyright terms: Public domain W3C validator