![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foun | Structured version Visualization version GIF version |
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
foun | ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 6798 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fofn 6798 | . . . 4 ⊢ (𝐺:𝐶–onto→𝐷 → 𝐺 Fn 𝐶) | |
3 | 1, 2 | anim12i 612 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶)) |
4 | fnun 6654 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
5 | 3, 4 | sylan 579 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) |
6 | rnun 6136 | . . 3 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
7 | forn 6799 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | ad2antrr 723 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐹 = 𝐵) |
9 | forn 6799 | . . . . 5 ⊢ (𝐺:𝐶–onto→𝐷 → ran 𝐺 = 𝐷) | |
10 | 9 | ad2antlr 724 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐺 = 𝐷) |
11 | 8, 10 | uneq12d 4157 | . . 3 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵 ∪ 𝐷)) |
12 | 6, 11 | eqtrid 2776 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷)) |
13 | df-fo 6540 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷))) | |
14 | 5, 12, 13 | sylanbrc 582 | 1 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∪ cun 3939 ∩ cin 3940 ∅c0 4315 ran crn 5668 Fn wfn 6529 –onto→wfo 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-fun 6536 df-fn 6537 df-f 6538 df-fo 6540 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |