![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foun | Structured version Visualization version GIF version |
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
foun | ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 6804 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fofn 6804 | . . . 4 ⊢ (𝐺:𝐶–onto→𝐷 → 𝐺 Fn 𝐶) | |
3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶)) |
4 | fnun 6660 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
5 | 3, 4 | sylan 580 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) |
6 | rnun 6142 | . . 3 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
7 | forn 6805 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | ad2antrr 724 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐹 = 𝐵) |
9 | forn 6805 | . . . . 5 ⊢ (𝐺:𝐶–onto→𝐷 → ran 𝐺 = 𝐷) | |
10 | 9 | ad2antlr 725 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐺 = 𝐷) |
11 | 8, 10 | uneq12d 4163 | . . 3 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵 ∪ 𝐷)) |
12 | 6, 11 | eqtrid 2784 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷)) |
13 | df-fo 6546 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷))) | |
14 | 5, 12, 13 | sylanbrc 583 | 1 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 ran crn 5676 Fn wfn 6535 –onto→wfo 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |