![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foun | Structured version Visualization version GIF version |
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
foun | ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 6823 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fofn 6823 | . . . 4 ⊢ (𝐺:𝐶–onto→𝐷 → 𝐺 Fn 𝐶) | |
3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶)) |
4 | fnun 6683 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
5 | 3, 4 | sylan 580 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) |
6 | rnun 6168 | . . 3 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
7 | forn 6824 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | ad2antrr 726 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐹 = 𝐵) |
9 | forn 6824 | . . . . 5 ⊢ (𝐺:𝐶–onto→𝐷 → ran 𝐺 = 𝐷) | |
10 | 9 | ad2antlr 727 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐺 = 𝐷) |
11 | 8, 10 | uneq12d 4179 | . . 3 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵 ∪ 𝐷)) |
12 | 6, 11 | eqtrid 2787 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷)) |
13 | df-fo 6569 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷))) | |
14 | 5, 12, 13 | sylanbrc 583 | 1 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 ran crn 5690 Fn wfn 6558 –onto→wfo 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |