MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foun Structured version   Visualization version   GIF version

Theorem foun 6880
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))

Proof of Theorem foun
StepHypRef Expression
1 fofn 6836 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 6836 . . . 4 (𝐺:𝐶onto𝐷𝐺 Fn 𝐶)
31, 2anim12i 612 . . 3 ((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) → (𝐹 Fn 𝐴𝐺 Fn 𝐶))
4 fnun 6693 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
53, 4sylan 579 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
6 rnun 6177 . . 3 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
7 forn 6837 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87ad2antrr 725 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐹 = 𝐵)
9 forn 6837 . . . . 5 (𝐺:𝐶onto𝐷 → ran 𝐺 = 𝐷)
109ad2antlr 726 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐺 = 𝐷)
118, 10uneq12d 4192 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵𝐷))
126, 11eqtrid 2792 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran (𝐹𝐺) = (𝐵𝐷))
13 df-fo 6579 . 2 ((𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ ran (𝐹𝐺) = (𝐵𝐷)))
145, 12, 13sylanbrc 582 1 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cun 3974  cin 3975  c0 4352  ran crn 5701   Fn wfn 6568  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator