| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege124 | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌 and if 𝑀 follows 𝑌 in the 𝑅-sequence, then 𝑀 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 124 of [Frege1879] p. 80. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege123.x | ⊢ 𝑋 ∈ 𝑈 |
| frege123.y | ⊢ 𝑌 ∈ 𝑉 |
| frege124.m | ⊢ 𝑀 ∈ 𝑊 |
| frege124.r | ⊢ 𝑅 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| frege124 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege123.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege123.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
| 3 | frege124.m | . . 3 ⊢ 𝑀 ∈ 𝑊 | |
| 4 | frege124.r | . . 3 ⊢ 𝑅 ∈ 𝑆 | |
| 5 | 1, 2, 3, 4 | frege110 43929 | . 2 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) |
| 6 | 1, 2 | frege123 43942 | . 2 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)))) |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2107 ∪ cun 3922 class class class wbr 5117 I cid 5545 ◡ccnv 5651 Fun wfun 6522 ‘cfv 6528 t+ctcl 14993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-frege1 43746 ax-frege2 43747 ax-frege8 43765 ax-frege28 43786 ax-frege31 43790 ax-frege41 43801 ax-frege52a 43813 ax-frege52c 43844 ax-frege58b 43857 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-n0 12495 df-z 12582 df-uz 12846 df-seq 14010 df-trcl 14995 df-relexp 15028 df-he 43729 |
| This theorem is referenced by: frege125 43944 |
| Copyright terms: Public domain | W3C validator |