Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege124 Structured version   Visualization version   GIF version

Theorem frege124 39843
Description: If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌 and if 𝑀 follows 𝑌 in the 𝑅-sequence, then 𝑀 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 124 of [Frege1879] p. 80. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
frege124.m 𝑀𝑊
frege124.r 𝑅𝑆
Assertion
Ref Expression
frege124 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))

Proof of Theorem frege124
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege123.x . . 3 𝑋𝑈
2 frege123.y . . 3 𝑌𝑉
3 frege124.m . . 3 𝑀𝑊
4 frege124.r . . 3 𝑅𝑆
51, 2, 3, 4frege110 39829 . 2 (∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))
61, 2frege123 39842 . 2 ((∀𝑎(𝑌𝑅𝑎𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀))))
75, 6ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌(t+‘𝑅)𝑀𝑋((t+‘𝑅) ∪ I )𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1520  wcel 2081  cun 3861   class class class wbr 4966   I cid 5352  ccnv 5447  Fun wfun 6224  cfv 6230  t+ctcl 14184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-frege1 39646  ax-frege2 39647  ax-frege8 39665  ax-frege28 39686  ax-frege31 39690  ax-frege41 39701  ax-frege52a 39713  ax-frege52c 39744  ax-frege58b 39757
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ifp 1056  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-n0 11751  df-z 11835  df-uz 12099  df-seq 13225  df-trcl 14186  df-relexp 14219  df-he 39629
This theorem is referenced by:  frege125  39844
  Copyright terms: Public domain W3C validator