Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrdmcl | Structured version Visualization version GIF version |
Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
frrrel.1 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frrdmcl | ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 6205 | . . 3 ⊢ (𝑧 = 𝑋 → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, 𝐴, 𝑋)) | |
2 | 1 | sseq1d 3957 | . 2 ⊢ (𝑧 = 𝑋 → (Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)) |
3 | eqid 2740 | . . 3 ⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | frrrel.1 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
5 | 3, 4 | frrlem8 8101 | . 2 ⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
6 | 2, 5 | vtoclga 3512 | 1 ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∃wex 1786 ∈ wcel 2110 {cab 2717 ∀wral 3066 ⊆ wss 3892 dom cdm 5590 ↾ cres 5592 Predcpred 6200 Fn wfn 6427 ‘cfv 6432 (class class class)co 7272 frecscfrecs 8088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 df-ov 7275 df-frecs 8089 |
This theorem is referenced by: wfrdmcl 8154 |
Copyright terms: Public domain | W3C validator |