| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frrdmcl | Structured version Visualization version GIF version | ||
| Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| frrrel.1 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| frrdmcl | ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predeq3 6278 | . . 3 ⊢ (𝑧 = 𝑋 → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, 𝐴, 𝑋)) | |
| 2 | 1 | sseq1d 3978 | . 2 ⊢ (𝑧 = 𝑋 → (Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)) |
| 3 | eqid 2729 | . . 3 ⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
| 4 | frrrel.1 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
| 5 | 3, 4 | frrlem8 8272 | . 2 ⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
| 6 | 2, 5 | vtoclga 3543 | 1 ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 Predcpred 6273 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 frecscfrecs 8259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 df-frecs 8260 |
| This theorem is referenced by: wfrdmcl 8301 |
| Copyright terms: Public domain | W3C validator |