MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrrel Structured version   Visualization version   GIF version

Theorem frrrel 8093
Description: Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
frrrel.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrrel Rel 𝐹

Proof of Theorem frrrel
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrrel.1 . 2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem6 8078 1 Rel 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wex 1783  {cab 2715  wral 3063  wss 3883  cres 5582  Rel wrel 5585  Predcpred 6190   Fn wfn 6413  cfv 6418  (class class class)co 7255  frecscfrecs 8067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258  df-frecs 8068
This theorem is referenced by:  wfrrel  8131
  Copyright terms: Public domain W3C validator