MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem3 Structured version   Visualization version   GIF version

Theorem frrlem3 8271
Description: Lemma for well-founded recursion. An acceptable function's domain is a subset of 𝐴. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem1.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem3 (𝑔𝐵 → dom 𝑔𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑔,𝑥,𝑦   𝑅,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem frrlem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frrlem1.1 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
21frrlem1 8269 . . 3 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
32eqabri 2871 . 2 (𝑔𝐵 ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
4 fndm 6645 . . . . . . 7 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
54sseq1d 4008 . . . . . 6 (𝑔 Fn 𝑧 → (dom 𝑔𝐴𝑧𝐴))
65biimpar 477 . . . . 5 ((𝑔 Fn 𝑧𝑧𝐴) → dom 𝑔𝐴)
76adantrr 714 . . . 4 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → dom 𝑔𝐴)
873adant3 1129 . . 3 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔𝐴)
98exlimiv 1925 . 2 (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔𝐴)
103, 9sylbi 216 1 (𝑔𝐵 → dom 𝑔𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2703  wral 3055  wss 3943  dom cdm 5669  cres 5671  Predcpred 6292   Fn wfn 6531  cfv 6536  (class class class)co 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-iota 6488  df-fun 6538  df-fn 6539  df-fv 6544  df-ov 7407
This theorem is referenced by:  frrlem7  8275  fprlem1  8283  frrlem15  9751
  Copyright terms: Public domain W3C validator