![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem3 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. An acceptable function's domain is a subset of 𝐴. (Contributed by Paul Chapman, 21-Apr-2012.) |
Ref | Expression |
---|---|
frrlem1.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Ref | Expression |
---|---|
frrlem3 | ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem1.1 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | 1 | frrlem1 8221 | . . 3 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
3 | 2 | eqabi 2878 | . 2 ⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
4 | fndm 6609 | . . . . . . 7 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | sseq1d 3979 | . . . . . 6 ⊢ (𝑔 Fn 𝑧 → (dom 𝑔 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
6 | 5 | biimpar 479 | . . . . 5 ⊢ ((𝑔 Fn 𝑧 ∧ 𝑧 ⊆ 𝐴) → dom 𝑔 ⊆ 𝐴) |
7 | 6 | adantrr 716 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → dom 𝑔 ⊆ 𝐴) |
8 | 7 | 3adant3 1133 | . . 3 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
9 | 8 | exlimiv 1934 | . 2 ⊢ (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
10 | 3, 9 | sylbi 216 | 1 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∀wral 3061 ⊆ wss 3914 dom cdm 5637 ↾ cres 5639 Predcpred 6256 Fn wfn 6495 ‘cfv 6500 (class class class)co 7361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-iota 6452 df-fun 6502 df-fn 6503 df-fv 6508 df-ov 7364 |
This theorem is referenced by: frrlem7 8227 fprlem1 8235 frrlem15 9701 |
Copyright terms: Public domain | W3C validator |