| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpr3 | Structured version Visualization version GIF version | ||
| Description: Law of well-founded recursion over a partial order, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in fpr1 8259 and fpr2 8260 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.) |
| Ref | Expression |
|---|---|
| fprr.1 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| fpr3 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴)) | |
| 2 | fprr.1 | . . . . 5 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
| 3 | 2 | fpr1 8259 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
| 4 | 2 | fpr2 8260 | . . . . 5 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 5 | 4 | ralrimiva 3125 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 6 | 3, 5 | jca 511 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
| 8 | simpr 484 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) | |
| 9 | fpr3g 8241 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | |
| 10 | 1, 7, 8, 9 | syl3anc 1373 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∀wral 3044 Po wpo 5537 Fr wfr 5581 Se wse 5582 ↾ cres 5633 Predcpred 6261 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 frecscfrecs 8236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-fr 5584 df-se 5585 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-frecs 8237 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |