Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfco Structured version   Visualization version   GIF version

Theorem smfco 41804
Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfco.s (𝜑𝑆 ∈ SAlg)
smfco.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfco.j 𝐽 = (topGen‘ran (,))
smfco.b 𝐵 = (SalGen‘𝐽)
smfco.h (𝜑𝐻 ∈ (SMblFn‘𝐵))
Assertion
Ref Expression
smfco (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))

Proof of Theorem smfco
Dummy variables 𝑒 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 2015 . 2 𝑎𝜑
2 smfco.s . 2 (𝜑𝑆 ∈ SAlg)
3 cnvimass 5727 . . . 4 (𝐹 “ dom 𝐻) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (𝐹 “ dom 𝐻) ⊆ dom 𝐹)
5 smfco.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2826 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 41737 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3838 . 2 (𝜑 → (𝐹 “ dom 𝐻) ⊆ 𝑆)
9 smfco.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 retop 22936 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
119, 10eqeltri 2903 . . . . . . . 8 𝐽 ∈ Top
1211a1i 11 . . . . . . 7 (𝜑𝐽 ∈ Top)
13 smfco.b . . . . . . 7 𝐵 = (SalGen‘𝐽)
1412, 13salgencld 41359 . . . . . 6 (𝜑𝐵 ∈ SAlg)
15 smfco.h . . . . . 6 (𝜑𝐻 ∈ (SMblFn‘𝐵))
16 eqid 2826 . . . . . 6 dom 𝐻 = dom 𝐻
1714, 15, 16smff 41736 . . . . 5 (𝜑𝐻:dom 𝐻⟶ℝ)
1817ffund 6283 . . . 4 (𝜑 → Fun 𝐻)
192, 5, 6smff 41736 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
2019ffund 6283 . . . 4 (𝜑 → Fun 𝐹)
2118, 20fco3 40227 . . 3 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ran 𝐻)
2217frnd 6286 . . 3 (𝜑 → ran 𝐻 ⊆ ℝ)
2321, 22fssd 6293 . 2 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
2423adantr 474 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
25 rexr 10403 . . . . . . 7 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2625adantl 475 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2724, 26preimaioomnf 41724 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎})
2827eqcomd 2832 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = ((𝐻𝐹) “ (-∞(,)𝑎)))
29 cnvco 5541 . . . . . 6 (𝐻𝐹) = (𝐹𝐻)
3029imaeq1i 5705 . . . . 5 ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎))
3130a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎)))
32 imaco 5882 . . . . 5 ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎)))
3332a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3428, 31, 333eqtrd 2866 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3517adantr 474 . . . . . . . . 9 ((𝜑𝑎 ∈ ℝ) → 𝐻:dom 𝐻⟶ℝ)
3635, 26preimaioomnf 41724 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3736eqcomd 2832 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} = (𝐻 “ (-∞(,)𝑎)))
3837eqcomd 2832 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3914adantr 474 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ SAlg)
4015adantr 474 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻 ∈ (SMblFn‘𝐵))
41 simpr 479 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4239, 40, 16, 41smfpreimalt 41735 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} ∈ (𝐵t dom 𝐻))
4338, 42eqeltrd 2907 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻))
4414elexd 3432 . . . . . . 7 (𝜑𝐵 ∈ V)
4515dmexd 7361 . . . . . . 7 (𝜑 → dom 𝐻 ∈ V)
46 elrest 16442 . . . . . . 7 ((𝐵 ∈ V ∧ dom 𝐻 ∈ V) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4744, 45, 46syl2anc 581 . . . . . 6 (𝜑 → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4847adantr 474 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4943, 48mpbid 224 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻))
50 imaeq2 5704 . . . . . . . . 9 ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
51503ad2ant3 1171 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
52 ovexd 6940 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t dom 𝐹) ∈ V)
535elexd 3432 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
54 cnvexg 7375 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
5553, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
56 imaexg 7366 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ dom 𝐻) ∈ V)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ dom 𝐻) ∈ V)
5857adantr 474 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ dom 𝐻) ∈ V)
592adantr 474 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑆 ∈ SAlg)
605adantr 474 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝐹 ∈ (SMblFn‘𝑆))
61 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
62 eqid 2826 . . . . . . . . . . . 12 (𝐹𝑒) = (𝐹𝑒)
6359, 60, 6, 9, 13, 61, 62smfpimbor1 41802 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹𝑒) ∈ (𝑆t dom 𝐹))
64 eqid 2826 . . . . . . . . . . 11 ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻))
6552, 58, 63, 64elrestd 40107 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
66 inpreima 6592 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6720, 66syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6867adantr 474 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
695dmexd 7361 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐹 ∈ V)
70 restabs 21341 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ (𝐹 “ dom 𝐻) ⊆ dom 𝐹 ∧ dom 𝐹 ∈ V) → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
712, 4, 69, 70syl3anc 1496 . . . . . . . . . . . . 13 (𝜑 → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
7271eqcomd 2832 . . . . . . . . . . . 12 (𝜑 → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
7372adantr 474 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
7468, 73eleq12d 2901 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)) ↔ ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻))))
7565, 74mpbird 249 . . . . . . . . 9 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
76753adant3 1168 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7751, 76eqeltrd 2907 . . . . . . 7 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
78773exp 1154 . . . . . 6 (𝜑 → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7978adantr 474 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
8079rexlimdv 3240 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻))))
8149, 80mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
8234, 81eqeltrd 2907 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} ∈ (𝑆t (𝐹 “ dom 𝐻)))
831, 2, 8, 23, 82issmfd 41739 1 (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3119  {crab 3122  Vcvv 3415  cin 3798  wss 3799   cuni 4659   class class class wbr 4874  ccnv 5342  dom cdm 5343  ran crn 5344  cima 5346  ccom 5347  Fun wfun 6118  wf 6120  cfv 6124  (class class class)co 6906  cr 10252  -∞cmnf 10390  *cxr 10391   < clt 10392  (,)cioo 12464  t crest 16435  topGenctg 16452  Topctop 21069  SAlgcsalg 41320  SalGencsalgen 41324  SMblFncsmblfn 41704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cc 9573  ax-ac2 9601  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-omul 7832  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-acn 9082  df-ac 9253  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-ioo 12468  df-ico 12470  df-fl 12889  df-rest 16437  df-topgen 16458  df-top 21070  df-bases 21122  df-salg 41321  df-salgen 41325  df-smblfn 41705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator