Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfco Structured version   Visualization version   GIF version

Theorem smfco 43875
Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfco.s (𝜑𝑆 ∈ SAlg)
smfco.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfco.j 𝐽 = (topGen‘ran (,))
smfco.b 𝐵 = (SalGen‘𝐽)
smfco.h (𝜑𝐻 ∈ (SMblFn‘𝐵))
Assertion
Ref Expression
smfco (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))

Proof of Theorem smfco
Dummy variables 𝑒 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1921 . 2 𝑎𝜑
2 smfco.s . 2 (𝜑𝑆 ∈ SAlg)
3 cnvimass 5923 . . . 4 (𝐹 “ dom 𝐻) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (𝐹 “ dom 𝐻) ⊆ dom 𝐹)
5 smfco.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2738 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 43808 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3887 . 2 (𝜑 → (𝐹 “ dom 𝐻) ⊆ 𝑆)
9 smfco.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 retop 23514 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
119, 10eqeltri 2829 . . . . . . . 8 𝐽 ∈ Top
1211a1i 11 . . . . . . 7 (𝜑𝐽 ∈ Top)
13 smfco.b . . . . . . 7 𝐵 = (SalGen‘𝐽)
1412, 13salgencld 43430 . . . . . 6 (𝜑𝐵 ∈ SAlg)
15 smfco.h . . . . . 6 (𝜑𝐻 ∈ (SMblFn‘𝐵))
16 eqid 2738 . . . . . 6 dom 𝐻 = dom 𝐻
1714, 15, 16smff 43807 . . . . 5 (𝜑𝐻:dom 𝐻⟶ℝ)
1817ffund 6508 . . . 4 (𝜑 → Fun 𝐻)
192, 5, 6smff 43807 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
2019ffund 6508 . . . 4 (𝜑 → Fun 𝐹)
2118, 20funcofd 6537 . . 3 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ran 𝐻)
2217frnd 6512 . . 3 (𝜑 → ran 𝐻 ⊆ ℝ)
2321, 22fssd 6522 . 2 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
24 cnvco 5728 . . . . 5 (𝐻𝐹) = (𝐹𝐻)
2524imaeq1i 5900 . . . 4 ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎))
2623adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
27 rexr 10765 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2827adantl 485 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2926, 28preimaioomnf 43795 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎})
30 imaco 6084 . . . . 5 ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎)))
3130a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3225, 29, 313eqtr3a 2797 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3317adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻:dom 𝐻⟶ℝ)
3433, 28preimaioomnf 43795 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3514adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ SAlg)
3615adantr 484 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻 ∈ (SMblFn‘𝐵))
37 simpr 488 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3835, 36, 16, 37smfpreimalt 43806 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} ∈ (𝐵t dom 𝐻))
3934, 38eqeltrd 2833 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻))
4014elexd 3418 . . . . . . 7 (𝜑𝐵 ∈ V)
4115dmexd 7636 . . . . . . 7 (𝜑 → dom 𝐻 ∈ V)
42 elrest 16804 . . . . . . 7 ((𝐵 ∈ V ∧ dom 𝐻 ∈ V) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4340, 41, 42syl2anc 587 . . . . . 6 (𝜑 → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4443adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4539, 44mpbid 235 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻))
46 imaeq2 5899 . . . . . . . . 9 ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
47463ad2ant3 1136 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
48 ovexd 7205 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t dom 𝐹) ∈ V)
495elexd 3418 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
50 cnvexg 7655 . . . . . . . . . . . . 13 (𝐹 ∈ V → 𝐹 ∈ V)
51 imaexg 7646 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ dom 𝐻) ∈ V)
5249, 50, 513syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ dom 𝐻) ∈ V)
5352adantr 484 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ dom 𝐻) ∈ V)
542adantr 484 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑆 ∈ SAlg)
555adantr 484 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝐹 ∈ (SMblFn‘𝑆))
56 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
57 eqid 2738 . . . . . . . . . . . 12 (𝐹𝑒) = (𝐹𝑒)
5854, 55, 6, 9, 13, 56, 57smfpimbor1 43873 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹𝑒) ∈ (𝑆t dom 𝐹))
59 eqid 2738 . . . . . . . . . . 11 ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻))
6048, 53, 58, 59elrestd 42196 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
61 inpreima 6841 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6220, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6362adantr 484 . . . . . . . . . 10 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
645dmexd 7636 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ∈ V)
65 restabs 21916 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ (𝐹 “ dom 𝐻) ⊆ dom 𝐹 ∧ dom 𝐹 ∈ V) → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
662, 4, 64, 65syl3anc 1372 . . . . . . . . . . . 12 (𝜑 → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
6766eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
6867adantr 484 . . . . . . . . . 10 ((𝜑𝑒𝐵) → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
6960, 63, 683eltr4d 2848 . . . . . . . . 9 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
70693adant3 1133 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7147, 70eqeltrd 2833 . . . . . . 7 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
72713exp 1120 . . . . . 6 (𝜑 → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7372adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7473rexlimdv 3193 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻))))
7545, 74mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7632, 75eqeltrd 2833 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} ∈ (𝑆t (𝐹 “ dom 𝐻)))
771, 2, 8, 23, 76issmfd 43810 1 (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3054  {crab 3057  Vcvv 3398  cin 3842  wss 3843   cuni 4796   class class class wbr 5030  ccnv 5524  dom cdm 5525  ran crn 5526  cima 5528  ccom 5529  Fun wfun 6333  wf 6335  cfv 6339  (class class class)co 7170  cr 10614  -∞cmnf 10751  *cxr 10752   < clt 10753  (,)cioo 12821  t crest 16797  topGenctg 16814  Topctop 21644  SAlgcsalg 43391  SalGencsalgen 43395  SMblFncsmblfn 43775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cc 9935  ax-ac2 9963  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-omul 8136  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-acn 9444  df-ac 9616  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-ioo 12825  df-ico 12827  df-fl 13253  df-rest 16799  df-topgen 16820  df-top 21645  df-bases 21697  df-salg 43392  df-salgen 43396  df-smblfn 43776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator