Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfco Structured version   Visualization version   GIF version

Theorem smfco 43097
Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfco.s (𝜑𝑆 ∈ SAlg)
smfco.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfco.j 𝐽 = (topGen‘ran (,))
smfco.b 𝐵 = (SalGen‘𝐽)
smfco.h (𝜑𝐻 ∈ (SMblFn‘𝐵))
Assertion
Ref Expression
smfco (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))

Proof of Theorem smfco
Dummy variables 𝑒 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 smfco.s . 2 (𝜑𝑆 ∈ SAlg)
3 cnvimass 5949 . . . 4 (𝐹 “ dom 𝐻) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (𝐹 “ dom 𝐻) ⊆ dom 𝐹)
5 smfco.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2821 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 43030 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3977 . 2 (𝜑 → (𝐹 “ dom 𝐻) ⊆ 𝑆)
9 smfco.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 retop 23370 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
119, 10eqeltri 2909 . . . . . . . 8 𝐽 ∈ Top
1211a1i 11 . . . . . . 7 (𝜑𝐽 ∈ Top)
13 smfco.b . . . . . . 7 𝐵 = (SalGen‘𝐽)
1412, 13salgencld 42652 . . . . . 6 (𝜑𝐵 ∈ SAlg)
15 smfco.h . . . . . 6 (𝜑𝐻 ∈ (SMblFn‘𝐵))
16 eqid 2821 . . . . . 6 dom 𝐻 = dom 𝐻
1714, 15, 16smff 43029 . . . . 5 (𝜑𝐻:dom 𝐻⟶ℝ)
1817ffund 6518 . . . 4 (𝜑 → Fun 𝐻)
192, 5, 6smff 43029 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
2019ffund 6518 . . . 4 (𝜑 → Fun 𝐹)
2118, 20fco3 41511 . . 3 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ran 𝐻)
2217frnd 6521 . . 3 (𝜑 → ran 𝐻 ⊆ ℝ)
2321, 22fssd 6528 . 2 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
2423adantr 483 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
25 rexr 10687 . . . . . . 7 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2625adantl 484 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2724, 26preimaioomnf 43017 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎})
2827eqcomd 2827 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = ((𝐻𝐹) “ (-∞(,)𝑎)))
29 cnvco 5756 . . . . . 6 (𝐻𝐹) = (𝐹𝐻)
3029imaeq1i 5926 . . . . 5 ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎))
3130a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎)))
32 imaco 6104 . . . . 5 ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎)))
3332a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3428, 31, 333eqtrd 2860 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3517adantr 483 . . . . . . . . 9 ((𝜑𝑎 ∈ ℝ) → 𝐻:dom 𝐻⟶ℝ)
3635, 26preimaioomnf 43017 . . . . . . . 8 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3736eqcomd 2827 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} = (𝐻 “ (-∞(,)𝑎)))
3837eqcomd 2827 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3914adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ SAlg)
4015adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻 ∈ (SMblFn‘𝐵))
41 simpr 487 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4239, 40, 16, 41smfpreimalt 43028 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} ∈ (𝐵t dom 𝐻))
4338, 42eqeltrd 2913 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻))
4414elexd 3514 . . . . . . 7 (𝜑𝐵 ∈ V)
4515dmexd 7615 . . . . . . 7 (𝜑 → dom 𝐻 ∈ V)
46 elrest 16701 . . . . . . 7 ((𝐵 ∈ V ∧ dom 𝐻 ∈ V) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4744, 45, 46syl2anc 586 . . . . . 6 (𝜑 → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4847adantr 483 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4943, 48mpbid 234 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻))
50 imaeq2 5925 . . . . . . . . 9 ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
51503ad2ant3 1131 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
52 ovexd 7191 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t dom 𝐹) ∈ V)
535elexd 3514 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
54 cnvexg 7629 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
5553, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
56 imaexg 7620 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ dom 𝐻) ∈ V)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ dom 𝐻) ∈ V)
5857adantr 483 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ dom 𝐻) ∈ V)
592adantr 483 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑆 ∈ SAlg)
605adantr 483 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝐹 ∈ (SMblFn‘𝑆))
61 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
62 eqid 2821 . . . . . . . . . . . 12 (𝐹𝑒) = (𝐹𝑒)
6359, 60, 6, 9, 13, 61, 62smfpimbor1 43095 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹𝑒) ∈ (𝑆t dom 𝐹))
64 eqid 2821 . . . . . . . . . . 11 ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻))
6552, 58, 63, 64elrestd 41394 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
66 inpreima 6834 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6720, 66syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6867adantr 483 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
695dmexd 7615 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐹 ∈ V)
70 restabs 21773 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ (𝐹 “ dom 𝐻) ⊆ dom 𝐹 ∧ dom 𝐹 ∈ V) → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
712, 4, 69, 70syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
7271eqcomd 2827 . . . . . . . . . . . 12 (𝜑 → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
7372adantr 483 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
7468, 73eleq12d 2907 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)) ↔ ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻))))
7565, 74mpbird 259 . . . . . . . . 9 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
76753adant3 1128 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7751, 76eqeltrd 2913 . . . . . . 7 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
78773exp 1115 . . . . . 6 (𝜑 → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7978adantr 483 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
8079rexlimdv 3283 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻))))
8149, 80mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
8234, 81eqeltrd 2913 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} ∈ (𝑆t (𝐹 “ dom 𝐻)))
831, 2, 8, 23, 82issmfd 43032 1 (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  {crab 3142  Vcvv 3494  cin 3935  wss 3936   cuni 4838   class class class wbr 5066  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  -∞cmnf 10673  *cxr 10674   < clt 10675  (,)cioo 12739  t crest 16694  topGenctg 16711  Topctop 21501  SAlgcsalg 42613  SalGencsalgen 42617  SMblFncsmblfn 42997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fl 13163  df-rest 16696  df-topgen 16717  df-top 21502  df-bases 21554  df-salg 42614  df-salgen 42618  df-smblfn 42998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator