Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfco Structured version   Visualization version   GIF version

Theorem smfco 45163
Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfco.s (𝜑𝑆 ∈ SAlg)
smfco.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfco.j 𝐽 = (topGen‘ran (,))
smfco.b 𝐵 = (SalGen‘𝐽)
smfco.h (𝜑𝐻 ∈ (SMblFn‘𝐵))
Assertion
Ref Expression
smfco (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))

Proof of Theorem smfco
Dummy variables 𝑒 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . 2 𝑎𝜑
2 smfco.s . 2 (𝜑𝑆 ∈ SAlg)
3 cnvimass 6038 . . . 4 (𝐹 “ dom 𝐻) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (𝐹 “ dom 𝐻) ⊆ dom 𝐹)
5 smfco.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2731 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 45094 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3957 . 2 (𝜑 → (𝐹 “ dom 𝐻) ⊆ 𝑆)
9 smfco.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 retop 24162 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
119, 10eqeltri 2828 . . . . . . . 8 𝐽 ∈ Top
1211a1i 11 . . . . . . 7 (𝜑𝐽 ∈ Top)
13 smfco.b . . . . . . 7 𝐵 = (SalGen‘𝐽)
1412, 13salgencld 44710 . . . . . 6 (𝜑𝐵 ∈ SAlg)
15 smfco.h . . . . . 6 (𝜑𝐻 ∈ (SMblFn‘𝐵))
16 eqid 2731 . . . . . 6 dom 𝐻 = dom 𝐻
1714, 15, 16smff 45093 . . . . 5 (𝜑𝐻:dom 𝐻⟶ℝ)
1817ffund 6677 . . . 4 (𝜑 → Fun 𝐻)
192, 5, 6smff 45093 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
2019ffund 6677 . . . 4 (𝜑 → Fun 𝐹)
2118, 20funcofd 6706 . . 3 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ran 𝐻)
2217frnd 6681 . . 3 (𝜑 → ran 𝐻 ⊆ ℝ)
2321, 22fssd 6691 . 2 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
24 cnvco 5846 . . . . 5 (𝐻𝐹) = (𝐹𝐻)
2524imaeq1i 6015 . . . 4 ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎))
2623adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
27 rexr 11210 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2827adantl 482 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2926, 28preimaioomnf 45080 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎})
30 imaco 6208 . . . . 5 ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎)))
3130a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3225, 29, 313eqtr3a 2795 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3317adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻:dom 𝐻⟶ℝ)
3433, 28preimaioomnf 45080 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3514adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ SAlg)
3615adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻 ∈ (SMblFn‘𝐵))
37 simpr 485 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3835, 36, 16, 37smfpreimalt 45092 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} ∈ (𝐵t dom 𝐻))
3934, 38eqeltrd 2832 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻))
4014elexd 3466 . . . . . . 7 (𝜑𝐵 ∈ V)
4115dmexd 7847 . . . . . . 7 (𝜑 → dom 𝐻 ∈ V)
42 elrest 17323 . . . . . . 7 ((𝐵 ∈ V ∧ dom 𝐻 ∈ V) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4340, 41, 42syl2anc 584 . . . . . 6 (𝜑 → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4443adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4539, 44mpbid 231 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻))
46 imaeq2 6014 . . . . . . . . 9 ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
47463ad2ant3 1135 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
48 ovexd 7397 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t dom 𝐹) ∈ V)
495elexd 3466 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
50 cnvexg 7866 . . . . . . . . . . . . 13 (𝐹 ∈ V → 𝐹 ∈ V)
51 imaexg 7857 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ dom 𝐻) ∈ V)
5249, 50, 513syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ dom 𝐻) ∈ V)
5352adantr 481 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ dom 𝐻) ∈ V)
542adantr 481 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑆 ∈ SAlg)
555adantr 481 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝐹 ∈ (SMblFn‘𝑆))
56 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
57 eqid 2731 . . . . . . . . . . . 12 (𝐹𝑒) = (𝐹𝑒)
5854, 55, 6, 9, 13, 56, 57smfpimbor1 45161 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹𝑒) ∈ (𝑆t dom 𝐹))
59 eqid 2731 . . . . . . . . . . 11 ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻))
6048, 53, 58, 59elrestd 43440 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
61 inpreima 7019 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6220, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6362adantr 481 . . . . . . . . . 10 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
645dmexd 7847 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ∈ V)
65 restabs 22553 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ (𝐹 “ dom 𝐻) ⊆ dom 𝐹 ∧ dom 𝐹 ∈ V) → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
662, 4, 64, 65syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
6766eqcomd 2737 . . . . . . . . . . 11 (𝜑 → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
6867adantr 481 . . . . . . . . . 10 ((𝜑𝑒𝐵) → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
6960, 63, 683eltr4d 2847 . . . . . . . . 9 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
70693adant3 1132 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7147, 70eqeltrd 2832 . . . . . . 7 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
72713exp 1119 . . . . . 6 (𝜑 → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7372adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7473rexlimdv 3146 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻))))
7545, 74mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7632, 75eqeltrd 2832 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} ∈ (𝑆t (𝐹 “ dom 𝐻)))
771, 2, 8, 23, 76issmfd 45096 1 (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3069  {crab 3405  Vcvv 3446  cin 3912  wss 3913   cuni 4870   class class class wbr 5110  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  ccom 5642  Fun wfun 6495  wf 6497  cfv 6501  (class class class)co 7362  cr 11059  -∞cmnf 11196  *cxr 11197   < clt 11198  (,)cioo 13274  t crest 17316  topGenctg 17333  Topctop 22279  SAlgcsalg 44669  SalGencsalgen 44673  SMblFncsmblfn 45056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cc 10380  ax-ac2 10408  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-acn 9887  df-ac 10061  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-q 12883  df-rp 12925  df-ioo 13278  df-ico 13280  df-fl 13707  df-rest 17318  df-topgen 17339  df-top 22280  df-bases 22333  df-salg 44670  df-salgen 44674  df-smblfn 45057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator