Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfco Structured version   Visualization version   GIF version

Theorem smfco 45033
Description: The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfco.s (𝜑𝑆 ∈ SAlg)
smfco.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfco.j 𝐽 = (topGen‘ran (,))
smfco.b 𝐵 = (SalGen‘𝐽)
smfco.h (𝜑𝐻 ∈ (SMblFn‘𝐵))
Assertion
Ref Expression
smfco (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))

Proof of Theorem smfco
Dummy variables 𝑒 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . 2 𝑎𝜑
2 smfco.s . 2 (𝜑𝑆 ∈ SAlg)
3 cnvimass 6033 . . . 4 (𝐹 “ dom 𝐻) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (𝐹 “ dom 𝐻) ⊆ dom 𝐹)
5 smfco.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2736 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 44964 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3954 . 2 (𝜑 → (𝐹 “ dom 𝐻) ⊆ 𝑆)
9 smfco.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 retop 24125 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
119, 10eqeltri 2834 . . . . . . . 8 𝐽 ∈ Top
1211a1i 11 . . . . . . 7 (𝜑𝐽 ∈ Top)
13 smfco.b . . . . . . 7 𝐵 = (SalGen‘𝐽)
1412, 13salgencld 44580 . . . . . 6 (𝜑𝐵 ∈ SAlg)
15 smfco.h . . . . . 6 (𝜑𝐻 ∈ (SMblFn‘𝐵))
16 eqid 2736 . . . . . 6 dom 𝐻 = dom 𝐻
1714, 15, 16smff 44963 . . . . 5 (𝜑𝐻:dom 𝐻⟶ℝ)
1817ffund 6672 . . . 4 (𝜑 → Fun 𝐻)
192, 5, 6smff 44963 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℝ)
2019ffund 6672 . . . 4 (𝜑 → Fun 𝐹)
2118, 20funcofd 6701 . . 3 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ran 𝐻)
2217frnd 6676 . . 3 (𝜑 → ran 𝐻 ⊆ ℝ)
2321, 22fssd 6686 . 2 (𝜑 → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
24 cnvco 5841 . . . . 5 (𝐻𝐹) = (𝐹𝐻)
2524imaeq1i 6010 . . . 4 ((𝐻𝐹) “ (-∞(,)𝑎)) = ((𝐹𝐻) “ (-∞(,)𝑎))
2623adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻𝐹):(𝐹 “ dom 𝐻)⟶ℝ)
27 rexr 11201 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2827adantl 482 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2926, 28preimaioomnf 44950 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐻𝐹) “ (-∞(,)𝑎)) = {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎})
30 imaco 6203 . . . . 5 ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎)))
3130a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐻) “ (-∞(,)𝑎)) = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3225, 29, 313eqtr3a 2800 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} = (𝐹 “ (𝐻 “ (-∞(,)𝑎))))
3317adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻:dom 𝐻⟶ℝ)
3433, 28preimaioomnf 44950 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎})
3514adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐵 ∈ SAlg)
3615adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝐻 ∈ (SMblFn‘𝐵))
37 simpr 485 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
3835, 36, 16, 37smfpreimalt 44962 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐻 ∣ (𝐻𝑥) < 𝑎} ∈ (𝐵t dom 𝐻))
3934, 38eqeltrd 2838 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻))
4014elexd 3465 . . . . . . 7 (𝜑𝐵 ∈ V)
4115dmexd 7842 . . . . . . 7 (𝜑 → dom 𝐻 ∈ V)
42 elrest 17309 . . . . . . 7 ((𝐵 ∈ V ∧ dom 𝐻 ∈ V) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4340, 41, 42syl2anc 584 . . . . . 6 (𝜑 → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4443adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐻 “ (-∞(,)𝑎)) ∈ (𝐵t dom 𝐻) ↔ ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)))
4539, 44mpbid 231 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻))
46 imaeq2 6009 . . . . . . . . 9 ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
47463ad2ant3 1135 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) = (𝐹 “ (𝑒 ∩ dom 𝐻)))
48 ovexd 7392 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝑆t dom 𝐹) ∈ V)
495elexd 3465 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
50 cnvexg 7861 . . . . . . . . . . . . 13 (𝐹 ∈ V → 𝐹 ∈ V)
51 imaexg 7852 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ dom 𝐻) ∈ V)
5249, 50, 513syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ dom 𝐻) ∈ V)
5352adantr 481 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹 “ dom 𝐻) ∈ V)
542adantr 481 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑆 ∈ SAlg)
555adantr 481 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝐹 ∈ (SMblFn‘𝑆))
56 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
57 eqid 2736 . . . . . . . . . . . 12 (𝐹𝑒) = (𝐹𝑒)
5854, 55, 6, 9, 13, 56, 57smfpimbor1 45031 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (𝐹𝑒) ∈ (𝑆t dom 𝐹))
59 eqid 2736 . . . . . . . . . . 11 ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻))
6048, 53, 58, 59elrestd 43308 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)) ∈ ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
61 inpreima 7014 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6220, 61syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
6362adantr 481 . . . . . . . . . 10 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) = ((𝐹𝑒) ∩ (𝐹 “ dom 𝐻)))
645dmexd 7842 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 ∈ V)
65 restabs 22516 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ (𝐹 “ dom 𝐻) ⊆ dom 𝐹 ∧ dom 𝐹 ∈ V) → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
662, 4, 64, 65syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)) = (𝑆t (𝐹 “ dom 𝐻)))
6766eqcomd 2742 . . . . . . . . . . 11 (𝜑 → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
6867adantr 481 . . . . . . . . . 10 ((𝜑𝑒𝐵) → (𝑆t (𝐹 “ dom 𝐻)) = ((𝑆t dom 𝐹) ↾t (𝐹 “ dom 𝐻)))
6960, 63, 683eltr4d 2853 . . . . . . . . 9 ((𝜑𝑒𝐵) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
70693adant3 1132 . . . . . . . 8 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝑒 ∩ dom 𝐻)) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7147, 70eqeltrd 2838 . . . . . . 7 ((𝜑𝑒𝐵 ∧ (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻)) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
72713exp 1119 . . . . . 6 (𝜑 → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7372adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑒𝐵 → ((𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))))
7473rexlimdv 3150 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∃𝑒𝐵 (𝐻 “ (-∞(,)𝑎)) = (𝑒 ∩ dom 𝐻) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻))))
7545, 74mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (𝐻 “ (-∞(,)𝑎))) ∈ (𝑆t (𝐹 “ dom 𝐻)))
7632, 75eqeltrd 2838 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐹 “ dom 𝐻) ∣ ((𝐻𝐹)‘𝑥) < 𝑎} ∈ (𝑆t (𝐹 “ dom 𝐻)))
771, 2, 8, 23, 76issmfd 44966 1 (𝜑 → (𝐻𝐹) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910   cuni 4865   class class class wbr 5105  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  ccom 5637  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  -∞cmnf 11187  *cxr 11188   < clt 11189  (,)cioo 13264  t crest 17302  topGenctg 17319  Topctop 22242  SAlgcsalg 44539  SalGencsalgen 44543  SMblFncsmblfn 44926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fl 13697  df-rest 17304  df-topgen 17325  df-top 22243  df-bases 22296  df-salg 44540  df-salgen 44544  df-smblfn 44927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator