MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof Structured version   Visualization version   GIF version

Theorem fcof 6674
Description: Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco 6675. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
fcof ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)

Proof of Theorem fcof
StepHypRef Expression
1 df-f 6485 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 fncofn 6598 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
32ex 412 . . . . . 6 (𝐹 Fn 𝐴 → (Fun 𝐺 → (𝐹𝐺) Fn (𝐺𝐴)))
43adantr 480 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (Fun 𝐺 → (𝐹𝐺) Fn (𝐺𝐴)))
5 rncoss 5915 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
6 sstr 3938 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐵) → ran (𝐹𝐺) ⊆ 𝐵)
75, 6mpan 690 . . . . . 6 (ran 𝐹𝐵 → ran (𝐹𝐺) ⊆ 𝐵)
87adantl 481 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → ran (𝐹𝐺) ⊆ 𝐵)
94, 8jctird 526 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (Fun 𝐺 → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵)))
109imp 406 . . 3 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
111, 10sylanb 581 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
12 df-f 6485 . 2 ((𝐹𝐺):(𝐺𝐴)⟶𝐵 ↔ ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
1311, 12sylibr 234 1 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3897  ccnv 5613  ran crn 5615  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fco  6675  funcofd  6683  f1cof1  6729  focofo  6748  fcores  47177
  Copyright terms: Public domain W3C validator