![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcof | Structured version Visualization version GIF version |
Description: Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco 6693. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
fcof | ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6501 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fncofn 6618 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
3 | 2 | ex 414 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (Fun 𝐺 → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
4 | 3 | adantr 482 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (Fun 𝐺 → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
5 | rncoss 5928 | . . . . . . 7 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
6 | sstr 3953 | . . . . . . 7 ⊢ ((ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ∘ 𝐺) ⊆ 𝐵) | |
7 | 5, 6 | mpan 689 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ∘ 𝐺) ⊆ 𝐵) |
8 | 7 | adantl 483 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ∘ 𝐺) ⊆ 𝐵) |
9 | 4, 8 | jctird 528 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (Fun 𝐺 → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵))) |
10 | 9 | imp 408 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵)) |
11 | 1, 10 | sylanb 582 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵)) |
12 | df-f 6501 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵 ↔ ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵)) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ⊆ wss 3911 ◡ccnv 5633 ran crn 5635 “ cima 5637 ∘ ccom 5638 Fun wfun 6491 Fn wfn 6492 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: fco 6693 funcofd 6702 f1cof1 6750 focofo 6770 fcores 45387 |
Copyright terms: Public domain | W3C validator |