| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcof | Structured version Visualization version GIF version | ||
| Description: Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco 6715. (Contributed by AV, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fcof | ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 6518 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | fncofn 6638 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
| 3 | 2 | ex 412 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (Fun 𝐺 → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (Fun 𝐺 → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
| 5 | rncoss 5942 | . . . . . . 7 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
| 6 | sstr 3958 | . . . . . . 7 ⊢ ((ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ∘ 𝐺) ⊆ 𝐵) | |
| 7 | 5, 6 | mpan 690 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ∘ 𝐺) ⊆ 𝐵) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ∘ 𝐺) ⊆ 𝐵) |
| 9 | 4, 8 | jctird 526 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (Fun 𝐺 → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵))) |
| 10 | 9 | imp 406 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵)) |
| 11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵)) |
| 12 | df-f 6518 | . 2 ⊢ ((𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵 ↔ ((𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴) ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐵)) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐴)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 ◡ccnv 5640 ran crn 5642 “ cima 5644 ∘ ccom 5645 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fco 6715 funcofd 6723 f1cof1 6769 focofo 6788 fcores 47072 |
| Copyright terms: Public domain | W3C validator |