MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof Structured version   Visualization version   GIF version

Theorem fcof 6693
Description: Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco 6694. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
fcof ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)

Proof of Theorem fcof
StepHypRef Expression
1 df-f 6503 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 fncofn 6617 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
32ex 412 . . . . . 6 (𝐹 Fn 𝐴 → (Fun 𝐺 → (𝐹𝐺) Fn (𝐺𝐴)))
43adantr 480 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (Fun 𝐺 → (𝐹𝐺) Fn (𝐺𝐴)))
5 rncoss 5928 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
6 sstr 3952 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐵) → ran (𝐹𝐺) ⊆ 𝐵)
75, 6mpan 690 . . . . . 6 (ran 𝐹𝐵 → ran (𝐹𝐺) ⊆ 𝐵)
87adantl 481 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → ran (𝐹𝐺) ⊆ 𝐵)
94, 8jctird 526 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (Fun 𝐺 → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵)))
109imp 406 . . 3 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
111, 10sylanb 581 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
12 df-f 6503 . 2 ((𝐹𝐺):(𝐺𝐴)⟶𝐵 ↔ ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
1311, 12sylibr 234 1 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3911  ccnv 5630  ran crn 5632  cima 5634  ccom 5635  Fun wfun 6493   Fn wfn 6494  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503
This theorem is referenced by:  fco  6694  funcofd  6702  f1cof1  6748  focofo  6767  fcores  47061
  Copyright terms: Public domain W3C validator