MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof Structured version   Visualization version   GIF version

Theorem fcof 6714
Description: Composition of a function with domain and codomain and a function as a function with domain and codomain. Generalization of fco 6715. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
fcof ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)

Proof of Theorem fcof
StepHypRef Expression
1 df-f 6518 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 fncofn 6638 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
32ex 412 . . . . . 6 (𝐹 Fn 𝐴 → (Fun 𝐺 → (𝐹𝐺) Fn (𝐺𝐴)))
43adantr 480 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (Fun 𝐺 → (𝐹𝐺) Fn (𝐺𝐴)))
5 rncoss 5942 . . . . . . 7 ran (𝐹𝐺) ⊆ ran 𝐹
6 sstr 3958 . . . . . . 7 ((ran (𝐹𝐺) ⊆ ran 𝐹 ∧ ran 𝐹𝐵) → ran (𝐹𝐺) ⊆ 𝐵)
75, 6mpan 690 . . . . . 6 (ran 𝐹𝐵 → ran (𝐹𝐺) ⊆ 𝐵)
87adantl 481 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → ran (𝐹𝐺) ⊆ 𝐵)
94, 8jctird 526 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (Fun 𝐺 → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵)))
109imp 406 . . 3 (((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
111, 10sylanb 581 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
12 df-f 6518 . 2 ((𝐹𝐺):(𝐺𝐴)⟶𝐵 ↔ ((𝐹𝐺) Fn (𝐺𝐴) ∧ ran (𝐹𝐺) ⊆ 𝐵))
1311, 12sylibr 234 1 ((𝐹:𝐴𝐵 ∧ Fun 𝐺) → (𝐹𝐺):(𝐺𝐴)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3917  ccnv 5640  ran crn 5642  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  fco  6715  funcofd  6723  f1cof1  6769  focofo  6788  fcores  47072
  Copyright terms: Public domain W3C validator