![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem11 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom 𝐹 = 𝐴. To do this, we set up a function 𝐶 that supposedly contains an element of 𝐴 that is not in dom 𝐹 and we show that the element must be in dom 𝐹. Our choice of what to restrict 𝐹 to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
Ref | Expression |
---|---|
frrlem11.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem11.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem11.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
frrlem11.4 | ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) |
Ref | Expression |
---|---|
frrlem11 | ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem11.1 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | frrlem11.2 | . . . . . . 7 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
3 | frrlem11.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
4 | 1, 2, 3 | frrlem9 8278 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
5 | 4 | funresd 6591 | . . . . 5 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑆)) |
6 | dmres 6003 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝑆) = (𝑆 ∩ dom 𝐹) | |
7 | df-fn 6546 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝑆) ∧ dom (𝐹 ↾ 𝑆) = (𝑆 ∩ dom 𝐹))) | |
8 | 6, 7 | mpbiran2 708 | . . . . 5 ⊢ ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ Fun (𝐹 ↾ 𝑆)) |
9 | 5, 8 | sylibr 233 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹)) |
10 | vex 3478 | . . . . 5 ⊢ 𝑧 ∈ V | |
11 | ovex 7441 | . . . . 5 ⊢ (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
12 | 10, 11 | fnsn 6606 | . . . 4 ⊢ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} |
13 | 9, 12 | jctir 521 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})) |
14 | eldifn 4127 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
15 | elinel2 4196 | . . . . 5 ⊢ (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹) | |
16 | 14, 15 | nsyl 140 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹)) |
17 | disjsn 4715 | . . . 4 ⊢ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹)) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅) |
19 | fnun 6663 | . . 3 ⊢ ((((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧}) ∧ ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅) → ((𝐹 ↾ 𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) | |
20 | 13, 18, 19 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹 ↾ 𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
21 | frrlem11.4 | . . 3 ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) | |
22 | 21 | fneq1i 6646 | . 2 ⊢ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ ((𝐹 ↾ 𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
23 | 20, 22 | sylibr 233 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∖ cdif 3945 ∪ cun 3946 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 ⟨cop 4634 class class class wbr 5148 dom cdm 5676 ↾ cres 5678 Predcpred 6299 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 (class class class)co 7408 frecscfrecs 8264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7411 df-frecs 8265 |
This theorem is referenced by: frrlem12 8281 frrlem13 8282 |
Copyright terms: Public domain | W3C validator |