Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrlem11 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom 𝐹 = 𝐴. To do this, we set up a function 𝐶 that supposedly contains an element of 𝐴 that is not in dom 𝐹 and we show that the element must be in dom 𝐹. Our choice of what to restrict 𝐹 to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
Ref | Expression |
---|---|
frrlem11.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem11.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem11.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
frrlem11.4 | ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
Ref | Expression |
---|---|
frrlem11 | ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem11.1 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | frrlem11.2 | . . . . . . 7 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
3 | frrlem11.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
4 | 1, 2, 3 | frrlem9 8101 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
5 | 4 | funresd 6475 | . . . . 5 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑆)) |
6 | dmres 5912 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝑆) = (𝑆 ∩ dom 𝐹) | |
7 | df-fn 6435 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝑆) ∧ dom (𝐹 ↾ 𝑆) = (𝑆 ∩ dom 𝐹))) | |
8 | 6, 7 | mpbiran2 707 | . . . . 5 ⊢ ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ Fun (𝐹 ↾ 𝑆)) |
9 | 5, 8 | sylibr 233 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹)) |
10 | vex 3435 | . . . . 5 ⊢ 𝑧 ∈ V | |
11 | ovex 7304 | . . . . 5 ⊢ (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
12 | 10, 11 | fnsn 6490 | . . . 4 ⊢ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} Fn {𝑧} |
13 | 9, 12 | jctir 521 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} Fn {𝑧})) |
14 | eldifn 4067 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
15 | elinel2 4135 | . . . . 5 ⊢ (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹) | |
16 | 14, 15 | nsyl 140 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹)) |
17 | disjsn 4653 | . . . 4 ⊢ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹)) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅) |
19 | fnun 6543 | . . 3 ⊢ ((((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} Fn {𝑧}) ∧ ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅) → ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) | |
20 | 13, 18, 19 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
21 | frrlem11.4 | . . 3 ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
22 | 21 | fneq1i 6528 | . 2 ⊢ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
23 | 20, 22 | sylibr 233 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∃wex 1786 ∈ wcel 2110 {cab 2717 ∀wral 3066 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 {csn 4567 〈cop 4573 class class class wbr 5079 dom cdm 5590 ↾ cres 5592 Predcpred 6200 Fun wfun 6426 Fn wfn 6427 ‘cfv 6432 (class class class)co 7271 frecscfrecs 8087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 df-ov 7274 df-frecs 8088 |
This theorem is referenced by: frrlem12 8104 frrlem13 8105 |
Copyright terms: Public domain | W3C validator |