| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frrlem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom 𝐹 = 𝐴. To do this, we set up a function 𝐶 that supposedly contains an element of 𝐴 that is not in dom 𝐹 and we show that the element must be in dom 𝐹. Our choice of what to restrict 𝐹 to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| frrlem11.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| frrlem11.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
| frrlem11.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
| frrlem11.4 | ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| Ref | Expression |
|---|---|
| frrlem11 | ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
| 2 | frrlem11.2 | . . . . . . 7 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
| 3 | frrlem11.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
| 4 | 1, 2, 3 | frrlem9 8293 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
| 5 | 4 | funresd 6579 | . . . . 5 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑆)) |
| 6 | dmres 5999 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝑆) = (𝑆 ∩ dom 𝐹) | |
| 7 | df-fn 6534 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝑆) ∧ dom (𝐹 ↾ 𝑆) = (𝑆 ∩ dom 𝐹))) | |
| 8 | 6, 7 | mpbiran2 710 | . . . . 5 ⊢ ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ Fun (𝐹 ↾ 𝑆)) |
| 9 | 5, 8 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹)) |
| 10 | vex 3463 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 11 | ovex 7438 | . . . . 5 ⊢ (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
| 12 | 10, 11 | fnsn 6594 | . . . 4 ⊢ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} Fn {𝑧} |
| 13 | 9, 12 | jctir 520 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} Fn {𝑧})) |
| 14 | eldifn 4107 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
| 15 | elinel2 4177 | . . . . 5 ⊢ (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹) | |
| 16 | 14, 15 | nsyl 140 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹)) |
| 17 | disjsn 4687 | . . . 4 ⊢ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹)) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅) |
| 19 | fnun 6652 | . . 3 ⊢ ((((𝐹 ↾ 𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} Fn {𝑧}) ∧ ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅) → ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) | |
| 20 | 13, 18, 19 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
| 21 | frrlem11.4 | . . 3 ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
| 22 | 21 | fneq1i 6635 | . 2 ⊢ (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
| 23 | 20, 22 | sylibr 234 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 〈cop 4607 class class class wbr 5119 dom cdm 5654 ↾ cres 5656 Predcpred 6289 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 frecscfrecs 8279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-ov 7408 df-frecs 8280 |
| This theorem is referenced by: frrlem12 8296 frrlem13 8297 |
| Copyright terms: Public domain | W3C validator |