MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfres Structured version   Visualization version   GIF version

Theorem noinfres 27661
Description: The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfres.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfres ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Distinct variable groups:   𝑢,𝐵,𝑣,𝑦,𝑔,𝑥   𝑔,𝑉   𝑣,𝐺   𝑢,𝑈,𝑣,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑦,𝑔)   𝐺(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfres
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5960 . . . 4 dom (𝑇 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑇)
2 noinfres.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfno 27657 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
433ad2ant2 1134 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑇 No )
5 nodmord 27592 . . . . . . 7 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑇)
7 simp31 1210 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈𝐵)
8 simp32 1211 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈)
9 simp33 1212 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
10 dmeq 5842 . . . . . . . . . . . 12 (𝑏 = 𝑈 → dom 𝑏 = dom 𝑈)
1110eleq2d 2817 . . . . . . . . . . 11 (𝑏 = 𝑈 → (𝐺 ∈ dom 𝑏𝐺 ∈ dom 𝑈))
12 breq1 5092 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 <s 𝑐𝑈 <s 𝑐))
1312notbid 318 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → (¬ 𝑏 <s 𝑐 ↔ ¬ 𝑈 <s 𝑐))
14 reseq1 5921 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
1514eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → ((𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
1613, 15imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = 𝑈 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
1716ralbidv 3155 . . . . . . . . . . . 12 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
18 breq2 5093 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑈 <s 𝑐𝑈 <s 𝑣))
1918notbid 318 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → (¬ 𝑈 <s 𝑐 ↔ ¬ 𝑈 <s 𝑣))
20 reseq1 5921 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑐 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))
2120eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → ((𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2219, 21imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = 𝑣 → ((¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2322cbvralvw 3210 . . . . . . . . . . . 12 (∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2417, 23bitrdi 287 . . . . . . . . . . 11 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2511, 24anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑈 → ((𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
2625rspcev 3572 . . . . . . . . 9 ((𝑈𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
277, 8, 9, 26syl12anc 836 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
28 eleq1 2819 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝑎 ∈ dom 𝑏𝐺 ∈ dom 𝑏))
29 suceq 6374 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐺 → suc 𝑎 = suc 𝐺)
3029reseq2d 5927 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑏 ↾ suc 𝑎) = (𝑏 ↾ suc 𝐺))
3129reseq2d 5927 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑐 ↾ suc 𝑎) = (𝑐 ↾ suc 𝐺))
3230, 31eqeq12d 2747 . . . . . . . . . . . . . 14 (𝑎 = 𝐺 → ((𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎) ↔ (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
3332imbi2d 340 . . . . . . . . . . . . 13 (𝑎 = 𝐺 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ (¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3433ralbidv 3155 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3528, 34anbi12d 632 . . . . . . . . . . 11 (𝑎 = 𝐺 → ((𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3635rexbidv 3156 . . . . . . . . . 10 (𝑎 = 𝐺 → (∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3736elabg 3627 . . . . . . . . 9 (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
388, 37syl 17 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3927, 38mpbird 257 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
402noinfdm 27658 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
41403ad2ant1 1133 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
4239, 41eleqtrrd 2834 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑇)
43 ordsucss 7748 . . . . . 6 (Ord dom 𝑇 → (𝐺 ∈ dom 𝑇 → suc 𝐺 ⊆ dom 𝑇))
446, 42, 43sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑇)
45 dfss2 3915 . . . . 5 (suc 𝐺 ⊆ dom 𝑇 ↔ (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
4644, 45sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
471, 46eqtrid 2778 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = suc 𝐺)
48 dmres 5960 . . . 4 dom (𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈)
49 simp2l 1200 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 No )
5049, 7sseldd 3930 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 No )
51 nodmon 27589 . . . . . . . 8 (𝑈 No → dom 𝑈 ∈ On)
5250, 51syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On)
53 eloni 6316 . . . . . . 7 (dom 𝑈 ∈ On → Ord dom 𝑈)
5452, 53syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈)
55 ordsucss 7748 . . . . . 6 (Ord dom 𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈))
5654, 8, 55sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈)
57 dfss2 3915 . . . . 5 (suc 𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5856, 57sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5948, 58eqtrid 2778 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺)
6047, 59eqtr4d 2769 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺))
6147eleq2d 2817 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺))
62 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
63 simpl2 1193 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐵 No 𝐵𝑉))
64 simpl31 1255 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈𝐵)
6556sselda 3929 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈)
6650adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈 No )
6766, 51syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → dom 𝑈 ∈ On)
68 simpl32 1256 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ dom 𝑈)
69 onelon 6331 . . . . . . . . . . . 12 ((dom 𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On)
7067, 68, 69syl2anc 584 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ On)
71 onsucb 7747 . . . . . . . . . . 11 (𝐺 ∈ On ↔ suc 𝐺 ∈ On)
7270, 71sylib 218 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝐺 ∈ On)
73 eloni 6316 . . . . . . . . . 10 (suc 𝐺 ∈ On → Ord suc 𝐺)
7472, 73syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → Ord suc 𝐺)
75 simpr 484 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺)
76 ordsucss 7748 . . . . . . . . 9 (Ord suc 𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
7774, 75, 76sylc 65 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺)
78 simpl33 1257 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
79 reseq1 5921 . . . . . . . . . . 11 ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎))
80 resabs1 5954 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎))
81 resabs1 5954 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2747 . . . . . . . . . . 11 (suc 𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8379, 82imbitrid 244 . . . . . . . . . 10 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8483imim2d 57 . . . . . . . . 9 (suc 𝑎 ⊆ suc 𝐺 → ((¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8584ralimdv 3146 . . . . . . . 8 (suc 𝑎 ⊆ suc 𝐺 → (∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8677, 78, 85sylc 65 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
872noinffv 27660 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝑎 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑇𝑎) = (𝑈𝑎))
8862, 63, 64, 65, 86, 87syl113anc 1384 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑇𝑎) = (𝑈𝑎))
8975fvresd 6842 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = (𝑇𝑎))
9075fvresd 6842 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈𝑎))
9188, 89, 903eqtr4d 2776 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
9291ex 412 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9361, 92sylbid 240 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9493ralrimiv 3123 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
95 nofun 27588 . . . . 5 (𝑇 No → Fun 𝑇)
9695funresd 6524 . . . 4 (𝑇 No → Fun (𝑇 ↾ suc 𝐺))
974, 96syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑇 ↾ suc 𝐺))
98 nofun 27588 . . . . 5 (𝑈 No → Fun 𝑈)
9998funresd 6524 . . . 4 (𝑈 No → Fun (𝑈 ↾ suc 𝐺))
10050, 99syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺))
101 eqfunfv 6969 . . 3 ((Fun (𝑇 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10297, 100, 101syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10360, 94, 102mpbir2and 713 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  cun 3895  cin 3896  wss 3897  ifcif 4472  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  Ord word 6305  Oncon0 6306  suc csuc 6308  cio 6435  Fun wfun 6475  cfv 6481  crio 7302  1oc1o 8378   No csur 27578   <s cslt 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583
This theorem is referenced by:  noinfbnd1lem1  27662  noinfbnd2  27670
  Copyright terms: Public domain W3C validator