MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfres Structured version   Visualization version   GIF version

Theorem noinfres 27785
Description: The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfres.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfres ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝐺   𝑥,𝑔,𝑦   𝑢,𝑈,𝑣,𝑥   𝑦,𝑢   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑦,𝑔)   𝐺(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfres
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 6041 . . . 4 dom (𝑇 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑇)
2 noinfres.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfno 27781 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
433ad2ant2 1134 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑇 No )
5 nodmord 27716 . . . . . . 7 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑇)
7 simp31 1209 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈𝐵)
8 simp32 1210 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈)
9 simp33 1211 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
10 dmeq 5928 . . . . . . . . . . . 12 (𝑏 = 𝑈 → dom 𝑏 = dom 𝑈)
1110eleq2d 2830 . . . . . . . . . . 11 (𝑏 = 𝑈 → (𝐺 ∈ dom 𝑏𝐺 ∈ dom 𝑈))
12 breq1 5169 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 <s 𝑐𝑈 <s 𝑐))
1312notbid 318 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → (¬ 𝑏 <s 𝑐 ↔ ¬ 𝑈 <s 𝑐))
14 reseq1 6003 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
1514eqeq1d 2742 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → ((𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
1613, 15imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = 𝑈 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
1716ralbidv 3184 . . . . . . . . . . . 12 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
18 breq2 5170 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑈 <s 𝑐𝑈 <s 𝑣))
1918notbid 318 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → (¬ 𝑈 <s 𝑐 ↔ ¬ 𝑈 <s 𝑣))
20 reseq1 6003 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑐 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))
2120eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → ((𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2219, 21imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = 𝑣 → ((¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2322cbvralvw 3243 . . . . . . . . . . . 12 (∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2417, 23bitrdi 287 . . . . . . . . . . 11 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2511, 24anbi12d 631 . . . . . . . . . 10 (𝑏 = 𝑈 → ((𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
2625rspcev 3635 . . . . . . . . 9 ((𝑈𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
277, 8, 9, 26syl12anc 836 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
28 eleq1 2832 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝑎 ∈ dom 𝑏𝐺 ∈ dom 𝑏))
29 suceq 6461 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐺 → suc 𝑎 = suc 𝐺)
3029reseq2d 6009 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑏 ↾ suc 𝑎) = (𝑏 ↾ suc 𝐺))
3129reseq2d 6009 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑐 ↾ suc 𝑎) = (𝑐 ↾ suc 𝐺))
3230, 31eqeq12d 2756 . . . . . . . . . . . . . 14 (𝑎 = 𝐺 → ((𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎) ↔ (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
3332imbi2d 340 . . . . . . . . . . . . 13 (𝑎 = 𝐺 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ (¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3433ralbidv 3184 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3528, 34anbi12d 631 . . . . . . . . . . 11 (𝑎 = 𝐺 → ((𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3635rexbidv 3185 . . . . . . . . . 10 (𝑎 = 𝐺 → (∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3736elabg 3690 . . . . . . . . 9 (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
388, 37syl 17 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3927, 38mpbird 257 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
402noinfdm 27782 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
41403ad2ant1 1133 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
4239, 41eleqtrrd 2847 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑇)
43 ordsucss 7854 . . . . . 6 (Ord dom 𝑇 → (𝐺 ∈ dom 𝑇 → suc 𝐺 ⊆ dom 𝑇))
446, 42, 43sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑇)
45 dfss2 3994 . . . . 5 (suc 𝐺 ⊆ dom 𝑇 ↔ (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
4644, 45sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
471, 46eqtrid 2792 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = suc 𝐺)
48 dmres 6041 . . . 4 dom (𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈)
49 simp2l 1199 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 No )
5049, 7sseldd 4009 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 No )
51 nodmon 27713 . . . . . . . 8 (𝑈 No → dom 𝑈 ∈ On)
5250, 51syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On)
53 eloni 6405 . . . . . . 7 (dom 𝑈 ∈ On → Ord dom 𝑈)
5452, 53syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈)
55 ordsucss 7854 . . . . . 6 (Ord dom 𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈))
5654, 8, 55sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈)
57 dfss2 3994 . . . . 5 (suc 𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5856, 57sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5948, 58eqtrid 2792 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺)
6047, 59eqtr4d 2783 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺))
6147eleq2d 2830 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺))
62 simpl1 1191 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
63 simpl2 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐵 No 𝐵𝑉))
64 simpl31 1254 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈𝐵)
6556sselda 4008 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈)
6650adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈 No )
6766, 51syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → dom 𝑈 ∈ On)
68 simpl32 1255 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ dom 𝑈)
69 onelon 6420 . . . . . . . . . . . 12 ((dom 𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On)
7067, 68, 69syl2anc 583 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ On)
71 onsucb 7853 . . . . . . . . . . 11 (𝐺 ∈ On ↔ suc 𝐺 ∈ On)
7270, 71sylib 218 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝐺 ∈ On)
73 eloni 6405 . . . . . . . . . 10 (suc 𝐺 ∈ On → Ord suc 𝐺)
7472, 73syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → Ord suc 𝐺)
75 simpr 484 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺)
76 ordsucss 7854 . . . . . . . . 9 (Ord suc 𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
7774, 75, 76sylc 65 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺)
78 simpl33 1256 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
79 reseq1 6003 . . . . . . . . . . 11 ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎))
80 resabs1 6036 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎))
81 resabs1 6036 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2756 . . . . . . . . . . 11 (suc 𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8379, 82imbitrid 244 . . . . . . . . . 10 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8483imim2d 57 . . . . . . . . 9 (suc 𝑎 ⊆ suc 𝐺 → ((¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8584ralimdv 3175 . . . . . . . 8 (suc 𝑎 ⊆ suc 𝐺 → (∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8677, 78, 85sylc 65 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
872noinffv 27784 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝑎 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑇𝑎) = (𝑈𝑎))
8862, 63, 64, 65, 86, 87syl113anc 1382 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑇𝑎) = (𝑈𝑎))
8975fvresd 6940 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = (𝑇𝑎))
9075fvresd 6940 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈𝑎))
9188, 89, 903eqtr4d 2790 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
9291ex 412 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9361, 92sylbid 240 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9493ralrimiv 3151 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
95 nofun 27712 . . . . 5 (𝑇 No → Fun 𝑇)
9695funresd 6621 . . . 4 (𝑇 No → Fun (𝑇 ↾ suc 𝐺))
974, 96syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑇 ↾ suc 𝐺))
98 nofun 27712 . . . . 5 (𝑈 No → Fun 𝑈)
9998funresd 6621 . . . 4 (𝑈 No → Fun (𝑈 ↾ suc 𝐺))
10050, 99syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺))
101 eqfunfv 7069 . . 3 ((Fun (𝑇 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10297, 100, 101syl2anc 583 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10360, 94, 102mpbir2and 712 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cun 3974  cin 3975  wss 3976  ifcif 4548  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249  dom cdm 5700  cres 5702  Ord word 6394  Oncon0 6395  suc csuc 6397  cio 6523  Fun wfun 6567  cfv 6573  crio 7403  1oc1o 8515   No csur 27702   <s cslt 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707
This theorem is referenced by:  noinfbnd1lem1  27786  noinfbnd2  27794
  Copyright terms: Public domain W3C validator