MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfres Structured version   Visualization version   GIF version

Theorem noinfres 27632
Description: The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfres.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfres ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Distinct variable groups:   𝑢,𝐵,𝑣,𝑦,𝑔,𝑥   𝑔,𝑉   𝑣,𝐺   𝑢,𝑈,𝑣,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑦,𝑔)   𝐺(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfres
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5963 . . . 4 dom (𝑇 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑇)
2 noinfres.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfno 27628 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
433ad2ant2 1134 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑇 No )
5 nodmord 27563 . . . . . . 7 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑇)
7 simp31 1210 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈𝐵)
8 simp32 1211 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈)
9 simp33 1212 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
10 dmeq 5846 . . . . . . . . . . . 12 (𝑏 = 𝑈 → dom 𝑏 = dom 𝑈)
1110eleq2d 2814 . . . . . . . . . . 11 (𝑏 = 𝑈 → (𝐺 ∈ dom 𝑏𝐺 ∈ dom 𝑈))
12 breq1 5095 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 <s 𝑐𝑈 <s 𝑐))
1312notbid 318 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → (¬ 𝑏 <s 𝑐 ↔ ¬ 𝑈 <s 𝑐))
14 reseq1 5924 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
1514eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → ((𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
1613, 15imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = 𝑈 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
1716ralbidv 3152 . . . . . . . . . . . 12 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
18 breq2 5096 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑈 <s 𝑐𝑈 <s 𝑣))
1918notbid 318 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → (¬ 𝑈 <s 𝑐 ↔ ¬ 𝑈 <s 𝑣))
20 reseq1 5924 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑐 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))
2120eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → ((𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2219, 21imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = 𝑣 → ((¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2322cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2417, 23bitrdi 287 . . . . . . . . . . 11 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2511, 24anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑈 → ((𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
2625rspcev 3577 . . . . . . . . 9 ((𝑈𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
277, 8, 9, 26syl12anc 836 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
28 eleq1 2816 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝑎 ∈ dom 𝑏𝐺 ∈ dom 𝑏))
29 suceq 6375 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐺 → suc 𝑎 = suc 𝐺)
3029reseq2d 5930 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑏 ↾ suc 𝑎) = (𝑏 ↾ suc 𝐺))
3129reseq2d 5930 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑐 ↾ suc 𝑎) = (𝑐 ↾ suc 𝐺))
3230, 31eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑎 = 𝐺 → ((𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎) ↔ (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
3332imbi2d 340 . . . . . . . . . . . . 13 (𝑎 = 𝐺 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ (¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3433ralbidv 3152 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3528, 34anbi12d 632 . . . . . . . . . . 11 (𝑎 = 𝐺 → ((𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3635rexbidv 3153 . . . . . . . . . 10 (𝑎 = 𝐺 → (∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3736elabg 3632 . . . . . . . . 9 (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
388, 37syl 17 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3927, 38mpbird 257 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
402noinfdm 27629 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
41403ad2ant1 1133 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
4239, 41eleqtrrd 2831 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑇)
43 ordsucss 7751 . . . . . 6 (Ord dom 𝑇 → (𝐺 ∈ dom 𝑇 → suc 𝐺 ⊆ dom 𝑇))
446, 42, 43sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑇)
45 dfss2 3921 . . . . 5 (suc 𝐺 ⊆ dom 𝑇 ↔ (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
4644, 45sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
471, 46eqtrid 2776 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = suc 𝐺)
48 dmres 5963 . . . 4 dom (𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈)
49 simp2l 1200 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 No )
5049, 7sseldd 3936 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 No )
51 nodmon 27560 . . . . . . . 8 (𝑈 No → dom 𝑈 ∈ On)
5250, 51syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On)
53 eloni 6317 . . . . . . 7 (dom 𝑈 ∈ On → Ord dom 𝑈)
5452, 53syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈)
55 ordsucss 7751 . . . . . 6 (Ord dom 𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈))
5654, 8, 55sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈)
57 dfss2 3921 . . . . 5 (suc 𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5856, 57sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5948, 58eqtrid 2776 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺)
6047, 59eqtr4d 2767 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺))
6147eleq2d 2814 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺))
62 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
63 simpl2 1193 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐵 No 𝐵𝑉))
64 simpl31 1255 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈𝐵)
6556sselda 3935 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈)
6650adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈 No )
6766, 51syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → dom 𝑈 ∈ On)
68 simpl32 1256 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ dom 𝑈)
69 onelon 6332 . . . . . . . . . . . 12 ((dom 𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On)
7067, 68, 69syl2anc 584 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ On)
71 onsucb 7750 . . . . . . . . . . 11 (𝐺 ∈ On ↔ suc 𝐺 ∈ On)
7270, 71sylib 218 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝐺 ∈ On)
73 eloni 6317 . . . . . . . . . 10 (suc 𝐺 ∈ On → Ord suc 𝐺)
7472, 73syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → Ord suc 𝐺)
75 simpr 484 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺)
76 ordsucss 7751 . . . . . . . . 9 (Ord suc 𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
7774, 75, 76sylc 65 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺)
78 simpl33 1257 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
79 reseq1 5924 . . . . . . . . . . 11 ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎))
80 resabs1 5957 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎))
81 resabs1 5957 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2745 . . . . . . . . . . 11 (suc 𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8379, 82imbitrid 244 . . . . . . . . . 10 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8483imim2d 57 . . . . . . . . 9 (suc 𝑎 ⊆ suc 𝐺 → ((¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8584ralimdv 3143 . . . . . . . 8 (suc 𝑎 ⊆ suc 𝐺 → (∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8677, 78, 85sylc 65 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
872noinffv 27631 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝑎 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑇𝑎) = (𝑈𝑎))
8862, 63, 64, 65, 86, 87syl113anc 1384 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑇𝑎) = (𝑈𝑎))
8975fvresd 6842 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = (𝑇𝑎))
9075fvresd 6842 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈𝑎))
9188, 89, 903eqtr4d 2774 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
9291ex 412 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9361, 92sylbid 240 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9493ralrimiv 3120 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
95 nofun 27559 . . . . 5 (𝑇 No → Fun 𝑇)
9695funresd 6525 . . . 4 (𝑇 No → Fun (𝑇 ↾ suc 𝐺))
974, 96syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑇 ↾ suc 𝐺))
98 nofun 27559 . . . . 5 (𝑈 No → Fun 𝑈)
9998funresd 6525 . . . 4 (𝑈 No → Fun (𝑈 ↾ suc 𝐺))
10050, 99syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺))
101 eqfunfv 6970 . . 3 ((Fun (𝑇 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10297, 100, 101syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10360, 94, 102mpbir2and 713 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3901  cin 3902  wss 3903  ifcif 4476  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173  dom cdm 5619  cres 5621  Ord word 6306  Oncon0 6307  suc csuc 6309  cio 6436  Fun wfun 6476  cfv 6482  crio 7305  1oc1o 8381   No csur 27549   <s cslt 27550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554
This theorem is referenced by:  noinfbnd1lem1  27633  noinfbnd2  27641
  Copyright terms: Public domain W3C validator