MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfres Structured version   Visualization version   GIF version

Theorem noinfres 27654
Description: The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfres.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfres ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝐺   𝑥,𝑔,𝑦   𝑢,𝑈,𝑣,𝑥   𝑦,𝑢   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑦,𝑔)   𝐺(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfres
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 6007 . . . 4 dom (𝑇 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑇)
2 noinfres.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfno 27650 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
433ad2ant2 1132 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑇 No )
5 nodmord 27585 . . . . . . 7 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑇)
7 simp31 1207 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈𝐵)
8 simp32 1208 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈)
9 simp33 1209 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
10 dmeq 5906 . . . . . . . . . . . 12 (𝑏 = 𝑈 → dom 𝑏 = dom 𝑈)
1110eleq2d 2815 . . . . . . . . . . 11 (𝑏 = 𝑈 → (𝐺 ∈ dom 𝑏𝐺 ∈ dom 𝑈))
12 breq1 5151 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 <s 𝑐𝑈 <s 𝑐))
1312notbid 318 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → (¬ 𝑏 <s 𝑐 ↔ ¬ 𝑈 <s 𝑐))
14 reseq1 5979 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
1514eqeq1d 2730 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → ((𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
1613, 15imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = 𝑈 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
1716ralbidv 3174 . . . . . . . . . . . 12 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
18 breq2 5152 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑈 <s 𝑐𝑈 <s 𝑣))
1918notbid 318 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → (¬ 𝑈 <s 𝑐 ↔ ¬ 𝑈 <s 𝑣))
20 reseq1 5979 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑐 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))
2120eqeq2d 2739 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → ((𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2219, 21imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = 𝑣 → ((¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2322cbvralvw 3231 . . . . . . . . . . . 12 (∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2417, 23bitrdi 287 . . . . . . . . . . 11 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2511, 24anbi12d 631 . . . . . . . . . 10 (𝑏 = 𝑈 → ((𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
2625rspcev 3609 . . . . . . . . 9 ((𝑈𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
277, 8, 9, 26syl12anc 836 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
28 eleq1 2817 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝑎 ∈ dom 𝑏𝐺 ∈ dom 𝑏))
29 suceq 6435 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐺 → suc 𝑎 = suc 𝐺)
3029reseq2d 5985 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑏 ↾ suc 𝑎) = (𝑏 ↾ suc 𝐺))
3129reseq2d 5985 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑐 ↾ suc 𝑎) = (𝑐 ↾ suc 𝐺))
3230, 31eqeq12d 2744 . . . . . . . . . . . . . 14 (𝑎 = 𝐺 → ((𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎) ↔ (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
3332imbi2d 340 . . . . . . . . . . . . 13 (𝑎 = 𝐺 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ (¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3433ralbidv 3174 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3528, 34anbi12d 631 . . . . . . . . . . 11 (𝑎 = 𝐺 → ((𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3635rexbidv 3175 . . . . . . . . . 10 (𝑎 = 𝐺 → (∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3736elabg 3665 . . . . . . . . 9 (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
388, 37syl 17 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3927, 38mpbird 257 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
402noinfdm 27651 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
41403ad2ant1 1131 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
4239, 41eleqtrrd 2832 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑇)
43 ordsucss 7821 . . . . . 6 (Ord dom 𝑇 → (𝐺 ∈ dom 𝑇 → suc 𝐺 ⊆ dom 𝑇))
446, 42, 43sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑇)
45 df-ss 3964 . . . . 5 (suc 𝐺 ⊆ dom 𝑇 ↔ (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
4644, 45sylib 217 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
471, 46eqtrid 2780 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = suc 𝐺)
48 dmres 6007 . . . 4 dom (𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈)
49 simp2l 1197 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 No )
5049, 7sseldd 3981 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 No )
51 nodmon 27582 . . . . . . . 8 (𝑈 No → dom 𝑈 ∈ On)
5250, 51syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On)
53 eloni 6379 . . . . . . 7 (dom 𝑈 ∈ On → Ord dom 𝑈)
5452, 53syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈)
55 ordsucss 7821 . . . . . 6 (Ord dom 𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈))
5654, 8, 55sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈)
57 df-ss 3964 . . . . 5 (suc 𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5856, 57sylib 217 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5948, 58eqtrid 2780 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺)
6047, 59eqtr4d 2771 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺))
6147eleq2d 2815 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺))
62 simpl1 1189 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
63 simpl2 1190 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐵 No 𝐵𝑉))
64 simpl31 1252 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈𝐵)
6556sselda 3980 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈)
6650adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈 No )
6766, 51syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → dom 𝑈 ∈ On)
68 simpl32 1253 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ dom 𝑈)
69 onelon 6394 . . . . . . . . . . . 12 ((dom 𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On)
7067, 68, 69syl2anc 583 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ On)
71 onsucb 7820 . . . . . . . . . . 11 (𝐺 ∈ On ↔ suc 𝐺 ∈ On)
7270, 71sylib 217 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝐺 ∈ On)
73 eloni 6379 . . . . . . . . . 10 (suc 𝐺 ∈ On → Ord suc 𝐺)
7472, 73syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → Ord suc 𝐺)
75 simpr 484 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺)
76 ordsucss 7821 . . . . . . . . 9 (Ord suc 𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
7774, 75, 76sylc 65 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺)
78 simpl33 1254 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
79 reseq1 5979 . . . . . . . . . . 11 ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎))
80 resabs1 6015 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎))
81 resabs1 6015 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2744 . . . . . . . . . . 11 (suc 𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8379, 82imbitrid 243 . . . . . . . . . 10 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8483imim2d 57 . . . . . . . . 9 (suc 𝑎 ⊆ suc 𝐺 → ((¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8584ralimdv 3166 . . . . . . . 8 (suc 𝑎 ⊆ suc 𝐺 → (∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8677, 78, 85sylc 65 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
872noinffv 27653 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝑎 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑇𝑎) = (𝑈𝑎))
8862, 63, 64, 65, 86, 87syl113anc 1380 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑇𝑎) = (𝑈𝑎))
8975fvresd 6917 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = (𝑇𝑎))
9075fvresd 6917 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈𝑎))
9188, 89, 903eqtr4d 2778 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
9291ex 412 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9361, 92sylbid 239 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9493ralrimiv 3142 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
95 nofun 27581 . . . . 5 (𝑇 No → Fun 𝑇)
9695funresd 6596 . . . 4 (𝑇 No → Fun (𝑇 ↾ suc 𝐺))
974, 96syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑇 ↾ suc 𝐺))
98 nofun 27581 . . . . 5 (𝑈 No → Fun 𝑈)
9998funresd 6596 . . . 4 (𝑈 No → Fun (𝑈 ↾ suc 𝐺))
10050, 99syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺))
101 eqfunfv 7045 . . 3 ((Fun (𝑇 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10297, 100, 101syl2anc 583 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10360, 94, 102mpbir2and 712 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  {cab 2705  wral 3058  wrex 3067  cun 3945  cin 3946  wss 3947  ifcif 4529  {csn 4629  cop 4635   class class class wbr 5148  cmpt 5231  dom cdm 5678  cres 5680  Ord word 6368  Oncon0 6369  suc csuc 6371  cio 6498  Fun wfun 6542  cfv 6548  crio 7375  1oc1o 8479   No csur 27572   <s cslt 27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-1o 8486  df-2o 8487  df-no 27575  df-slt 27576  df-bday 27577
This theorem is referenced by:  noinfbnd1lem1  27655  noinfbnd2  27663
  Copyright terms: Public domain W3C validator