MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfres Structured version   Visualization version   GIF version

Theorem noinfres 27634
Description: The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
noinfres.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfres ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Distinct variable groups:   𝑢,𝐵,𝑣,𝑦,𝑔,𝑥   𝑔,𝑉   𝑣,𝐺   𝑢,𝑈,𝑣,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑦,𝑔)   𝐺(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfres
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 5983 . . . 4 dom (𝑇 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑇)
2 noinfres.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfno 27630 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
433ad2ant2 1134 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑇 No )
5 nodmord 27565 . . . . . . 7 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑇)
7 simp31 1210 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈𝐵)
8 simp32 1211 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑈)
9 simp33 1212 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
10 dmeq 5867 . . . . . . . . . . . 12 (𝑏 = 𝑈 → dom 𝑏 = dom 𝑈)
1110eleq2d 2814 . . . . . . . . . . 11 (𝑏 = 𝑈 → (𝐺 ∈ dom 𝑏𝐺 ∈ dom 𝑈))
12 breq1 5110 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 <s 𝑐𝑈 <s 𝑐))
1312notbid 318 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → (¬ 𝑏 <s 𝑐 ↔ ¬ 𝑈 <s 𝑐))
14 reseq1 5944 . . . . . . . . . . . . . . 15 (𝑏 = 𝑈 → (𝑏 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
1514eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑏 = 𝑈 → ((𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
1613, 15imbi12d 344 . . . . . . . . . . . . 13 (𝑏 = 𝑈 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
1716ralbidv 3156 . . . . . . . . . . . 12 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
18 breq2 5111 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑈 <s 𝑐𝑈 <s 𝑣))
1918notbid 318 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → (¬ 𝑈 <s 𝑐 ↔ ¬ 𝑈 <s 𝑣))
20 reseq1 5944 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → (𝑐 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))
2120eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑐 = 𝑣 → ((𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺) ↔ (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2219, 21imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = 𝑣 → ((¬ 𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2322cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑐𝐵𝑈 <s 𝑐 → (𝑈 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
2417, 23bitrdi 287 . . . . . . . . . . 11 (𝑏 = 𝑈 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)) ↔ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
2511, 24anbi12d 632 . . . . . . . . . 10 (𝑏 = 𝑈 → ((𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))) ↔ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))))
2625rspcev 3588 . . . . . . . . 9 ((𝑈𝐵 ∧ (𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
277, 8, 9, 26syl12anc 836 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
28 eleq1 2816 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝑎 ∈ dom 𝑏𝐺 ∈ dom 𝑏))
29 suceq 6400 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐺 → suc 𝑎 = suc 𝐺)
3029reseq2d 5950 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑏 ↾ suc 𝑎) = (𝑏 ↾ suc 𝐺))
3129reseq2d 5950 . . . . . . . . . . . . . . 15 (𝑎 = 𝐺 → (𝑐 ↾ suc 𝑎) = (𝑐 ↾ suc 𝐺))
3230, 31eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑎 = 𝐺 → ((𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎) ↔ (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))
3332imbi2d 340 . . . . . . . . . . . . 13 (𝑎 = 𝐺 → ((¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ (¬ 𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3433ralbidv 3156 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)) ↔ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺))))
3528, 34anbi12d 632 . . . . . . . . . . 11 (𝑎 = 𝐺 → ((𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3635rexbidv 3157 . . . . . . . . . 10 (𝑎 = 𝐺 → (∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎))) ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3736elabg 3643 . . . . . . . . 9 (𝐺 ∈ dom 𝑈 → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
388, 37syl 17 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))} ↔ ∃𝑏𝐵 (𝐺 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝐺) = (𝑐 ↾ suc 𝐺)))))
3927, 38mpbird 257 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
402noinfdm 27631 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
41403ad2ant1 1133 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑇 = {𝑎 ∣ ∃𝑏𝐵 (𝑎 ∈ dom 𝑏 ∧ ∀𝑐𝐵𝑏 <s 𝑐 → (𝑏 ↾ suc 𝑎) = (𝑐 ↾ suc 𝑎)))})
4239, 41eleqtrrd 2831 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐺 ∈ dom 𝑇)
43 ordsucss 7793 . . . . . 6 (Ord dom 𝑇 → (𝐺 ∈ dom 𝑇 → suc 𝐺 ⊆ dom 𝑇))
446, 42, 43sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑇)
45 dfss2 3932 . . . . 5 (suc 𝐺 ⊆ dom 𝑇 ↔ (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
4644, 45sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑇) = suc 𝐺)
471, 46eqtrid 2776 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = suc 𝐺)
48 dmres 5983 . . . 4 dom (𝑈 ↾ suc 𝐺) = (suc 𝐺 ∩ dom 𝑈)
49 simp2l 1200 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝐵 No )
5049, 7sseldd 3947 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → 𝑈 No )
51 nodmon 27562 . . . . . . . 8 (𝑈 No → dom 𝑈 ∈ On)
5250, 51syl 17 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom 𝑈 ∈ On)
53 eloni 6342 . . . . . . 7 (dom 𝑈 ∈ On → Ord dom 𝑈)
5452, 53syl 17 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Ord dom 𝑈)
55 ordsucss 7793 . . . . . 6 (Ord dom 𝑈 → (𝐺 ∈ dom 𝑈 → suc 𝐺 ⊆ dom 𝑈))
5654, 8, 55sylc 65 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → suc 𝐺 ⊆ dom 𝑈)
57 dfss2 3932 . . . . 5 (suc 𝐺 ⊆ dom 𝑈 ↔ (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5856, 57sylib 218 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (suc 𝐺 ∩ dom 𝑈) = suc 𝐺)
5948, 58eqtrid 2776 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑈 ↾ suc 𝐺) = suc 𝐺)
6047, 59eqtr4d 2767 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺))
6147eleq2d 2814 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) ↔ 𝑎 ∈ suc 𝐺))
62 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
63 simpl2 1193 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝐵 No 𝐵𝑉))
64 simpl31 1255 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈𝐵)
6556sselda 3946 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ dom 𝑈)
6650adantr 480 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑈 No )
6766, 51syl 17 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → dom 𝑈 ∈ On)
68 simpl32 1256 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ dom 𝑈)
69 onelon 6357 . . . . . . . . . . . 12 ((dom 𝑈 ∈ On ∧ 𝐺 ∈ dom 𝑈) → 𝐺 ∈ On)
7067, 68, 69syl2anc 584 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝐺 ∈ On)
71 onsucb 7792 . . . . . . . . . . 11 (𝐺 ∈ On ↔ suc 𝐺 ∈ On)
7270, 71sylib 218 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝐺 ∈ On)
73 eloni 6342 . . . . . . . . . 10 (suc 𝐺 ∈ On → Ord suc 𝐺)
7472, 73syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → Ord suc 𝐺)
75 simpr 484 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → 𝑎 ∈ suc 𝐺)
76 ordsucss 7793 . . . . . . . . 9 (Ord suc 𝐺 → (𝑎 ∈ suc 𝐺 → suc 𝑎 ⊆ suc 𝐺))
7774, 75, 76sylc 65 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → suc 𝑎 ⊆ suc 𝐺)
78 simpl33 1257 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
79 reseq1 5944 . . . . . . . . . . 11 ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎))
80 resabs1 5977 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑈 ↾ suc 𝑎))
81 resabs1 5977 . . . . . . . . . . . 12 (suc 𝑎 ⊆ suc 𝐺 → ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2745 . . . . . . . . . . 11 (suc 𝑎 ⊆ suc 𝐺 → (((𝑈 ↾ suc 𝐺) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝐺) ↾ suc 𝑎) ↔ (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8379, 82imbitrid 244 . . . . . . . . . 10 (suc 𝑎 ⊆ suc 𝐺 → ((𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8483imim2d 57 . . . . . . . . 9 (suc 𝑎 ⊆ suc 𝐺 → ((¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8584ralimdv 3147 . . . . . . . 8 (suc 𝑎 ⊆ suc 𝐺 → (∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8677, 78, 85sylc 65 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
872noinffv 27633 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝑎 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))) → (𝑇𝑎) = (𝑈𝑎))
8862, 63, 64, 65, 86, 87syl113anc 1384 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → (𝑇𝑎) = (𝑈𝑎))
8975fvresd 6878 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = (𝑇𝑎))
9075fvresd 6878 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑈 ↾ suc 𝐺)‘𝑎) = (𝑈𝑎))
9188, 89, 903eqtr4d 2774 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) ∧ 𝑎 ∈ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
9291ex 412 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ suc 𝐺 → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9361, 92sylbid 240 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑎 ∈ dom (𝑇 ↾ suc 𝐺) → ((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎)))
9493ralrimiv 3124 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))
95 nofun 27561 . . . . 5 (𝑇 No → Fun 𝑇)
9695funresd 6559 . . . 4 (𝑇 No → Fun (𝑇 ↾ suc 𝐺))
974, 96syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑇 ↾ suc 𝐺))
98 nofun 27561 . . . . 5 (𝑈 No → Fun 𝑈)
9998funresd 6559 . . . 4 (𝑈 No → Fun (𝑈 ↾ suc 𝐺))
10050, 99syl 17 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → Fun (𝑈 ↾ suc 𝐺))
101 eqfunfv 7008 . . 3 ((Fun (𝑇 ↾ suc 𝐺) ∧ Fun (𝑈 ↾ suc 𝐺)) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10297, 100, 101syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → ((𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺) ↔ (dom (𝑇 ↾ suc 𝐺) = dom (𝑈 ↾ suc 𝐺) ∧ ∀𝑎 ∈ dom (𝑇 ↾ suc 𝐺)((𝑇 ↾ suc 𝐺)‘𝑎) = ((𝑈 ↾ suc 𝐺)‘𝑎))))
10360, 94, 102mpbir2and 713 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵𝐺 ∈ dom 𝑈 ∧ ∀𝑣𝐵𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3912  cin 3913  wss 3914  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  Ord word 6331  Oncon0 6332  suc csuc 6334  cio 6462  Fun wfun 6505  cfv 6511  crio 7343  1oc1o 8427   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556
This theorem is referenced by:  noinfbnd1lem1  27635  noinfbnd2  27643
  Copyright terms: Public domain W3C validator