![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsss | Structured version Visualization version GIF version |
Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.) |
Ref | Expression |
---|---|
setrecsss.1 | ⊢ (𝜑 → Fun 𝐺) |
setrecsss.2 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
Ref | Expression |
---|---|
setrecsss | ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | setrecsss.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
3 | imass1 6097 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) |
5 | 4 | unissd 4917 | . . . . . . 7 ⊢ (𝜑 → ∪ (𝐹 “ {𝑥}) ⊆ ∪ (𝐺 “ {𝑥})) |
6 | setrecsss.1 | . . . . . . . . 9 ⊢ (𝜑 → Fun 𝐺) | |
7 | funss 6564 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
8 | 2, 6, 7 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
9 | funfv 6975 | . . . . . . . 8 ⊢ (Fun 𝐹 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) |
11 | funfv 6975 | . . . . . . . 8 ⊢ (Fun 𝐺 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) | |
12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) |
13 | 5, 10, 12 | 3sstr4d 4028 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
15 | eqid 2732 | . . . . . 6 ⊢ setrecs(𝐺) = setrecs(𝐺) | |
16 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V) |
18 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺)) | |
19 | 15, 17, 18 | setrec1 47689 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐺‘𝑥) ⊆ setrecs(𝐺)) |
20 | 14, 19 | sstrd 3991 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ setrecs(𝐺)) |
21 | 20 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
22 | 21 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
23 | 1, 22 | setrec2v 47694 | 1 ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 {csn 4627 ∪ cuni 4907 “ cima 5678 Fun wfun 6534 ‘cfv 6540 setrecscsetrecs 47681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-reg 9583 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-r1 9755 df-rank 9756 df-setrecs 47682 |
This theorem is referenced by: setrecsres 47700 |
Copyright terms: Public domain | W3C validator |