Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsss Structured version   Visualization version   GIF version

Theorem setrecsss 49690
Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.)
Hypotheses
Ref Expression
setrecsss.1 (𝜑 → Fun 𝐺)
setrecsss.2 (𝜑𝐹𝐺)
Assertion
Ref Expression
setrecsss (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))

Proof of Theorem setrecsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 setrecs(𝐹) = setrecs(𝐹)
2 setrecsss.2 . . . . . . . . 9 (𝜑𝐹𝐺)
3 imass1 6052 . . . . . . . . 9 (𝐹𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
54unissd 4868 . . . . . . 7 (𝜑 (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
6 setrecsss.1 . . . . . . . . 9 (𝜑 → Fun 𝐺)
7 funss 6501 . . . . . . . . 9 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
82, 6, 7sylc 65 . . . . . . . 8 (𝜑 → Fun 𝐹)
9 funfv 6910 . . . . . . . 8 (Fun 𝐹 → (𝐹𝑥) = (𝐹 “ {𝑥}))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐹𝑥) = (𝐹 “ {𝑥}))
11 funfv 6910 . . . . . . . 8 (Fun 𝐺 → (𝐺𝑥) = (𝐺 “ {𝑥}))
126, 11syl 17 . . . . . . 7 (𝜑 → (𝐺𝑥) = (𝐺 “ {𝑥}))
135, 10, 123sstr4d 3991 . . . . . 6 (𝜑 → (𝐹𝑥) ⊆ (𝐺𝑥))
1413adantr 480 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ (𝐺𝑥))
15 eqid 2729 . . . . . 6 setrecs(𝐺) = setrecs(𝐺)
16 vex 3440 . . . . . . 7 𝑥 ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V)
18 simpr 484 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺))
1915, 17, 18setrec1 49680 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐺𝑥) ⊆ setrecs(𝐺))
2014, 19sstrd 3946 . . . 4 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ setrecs(𝐺))
2120ex 412 . . 3 (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
2221alrimiv 1927 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
231, 22setrec2v 49685 1 (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {csn 4577   cuni 4858  cima 5622  Fun wfun 6476  cfv 6482  setrecscsetrecs 49672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661  df-setrecs 49673
This theorem is referenced by:  setrecsres  49691
  Copyright terms: Public domain W3C validator