| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsss | Structured version Visualization version GIF version | ||
| Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.) |
| Ref | Expression |
|---|---|
| setrecsss.1 | ⊢ (𝜑 → Fun 𝐺) |
| setrecsss.2 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
| Ref | Expression |
|---|---|
| setrecsss | ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
| 2 | setrecsss.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
| 3 | imass1 6088 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) |
| 5 | 4 | unissd 4893 | . . . . . . 7 ⊢ (𝜑 → ∪ (𝐹 “ {𝑥}) ⊆ ∪ (𝐺 “ {𝑥})) |
| 6 | setrecsss.1 | . . . . . . . . 9 ⊢ (𝜑 → Fun 𝐺) | |
| 7 | funss 6554 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
| 8 | 2, 6, 7 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
| 9 | funfv 6965 | . . . . . . . 8 ⊢ (Fun 𝐹 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) |
| 11 | funfv 6965 | . . . . . . . 8 ⊢ (Fun 𝐺 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) | |
| 12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) |
| 13 | 5, 10, 12 | 3sstr4d 4014 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
| 15 | eqid 2735 | . . . . . 6 ⊢ setrecs(𝐺) = setrecs(𝐺) | |
| 16 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V) |
| 18 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺)) | |
| 19 | 15, 17, 18 | setrec1 49503 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐺‘𝑥) ⊆ setrecs(𝐺)) |
| 20 | 14, 19 | sstrd 3969 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ setrecs(𝐺)) |
| 21 | 20 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
| 22 | 21 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
| 23 | 1, 22 | setrec2v 49508 | 1 ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 “ cima 5657 Fun wfun 6524 ‘cfv 6530 setrecscsetrecs 49495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-reg 9604 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-r1 9776 df-rank 9777 df-setrecs 49496 |
| This theorem is referenced by: setrecsres 49514 |
| Copyright terms: Public domain | W3C validator |