| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsss | Structured version Visualization version GIF version | ||
| Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.) |
| Ref | Expression |
|---|---|
| setrecsss.1 | ⊢ (𝜑 → Fun 𝐺) |
| setrecsss.2 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
| Ref | Expression |
|---|---|
| setrecsss | ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
| 2 | setrecsss.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
| 3 | imass1 6072 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) |
| 5 | 4 | unissd 4881 | . . . . . . 7 ⊢ (𝜑 → ∪ (𝐹 “ {𝑥}) ⊆ ∪ (𝐺 “ {𝑥})) |
| 6 | setrecsss.1 | . . . . . . . . 9 ⊢ (𝜑 → Fun 𝐺) | |
| 7 | funss 6535 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
| 8 | 2, 6, 7 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
| 9 | funfv 6948 | . . . . . . . 8 ⊢ (Fun 𝐹 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) |
| 11 | funfv 6948 | . . . . . . . 8 ⊢ (Fun 𝐺 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) | |
| 12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) |
| 13 | 5, 10, 12 | 3sstr4d 4002 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
| 15 | eqid 2729 | . . . . . 6 ⊢ setrecs(𝐺) = setrecs(𝐺) | |
| 16 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V) |
| 18 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺)) | |
| 19 | 15, 17, 18 | setrec1 49680 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐺‘𝑥) ⊆ setrecs(𝐺)) |
| 20 | 14, 19 | sstrd 3957 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ setrecs(𝐺)) |
| 21 | 20 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
| 22 | 21 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
| 23 | 1, 22 | setrec2v 49685 | 1 ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 ∪ cuni 4871 “ cima 5641 Fun wfun 6505 ‘cfv 6511 setrecscsetrecs 49672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 df-setrecs 49673 |
| This theorem is referenced by: setrecsres 49691 |
| Copyright terms: Public domain | W3C validator |