Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsss Structured version   Visualization version   GIF version

Theorem setrecsss 49694
Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.)
Hypotheses
Ref Expression
setrecsss.1 (𝜑 → Fun 𝐺)
setrecsss.2 (𝜑𝐹𝐺)
Assertion
Ref Expression
setrecsss (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))

Proof of Theorem setrecsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 setrecs(𝐹) = setrecs(𝐹)
2 setrecsss.2 . . . . . . . . 9 (𝜑𝐹𝐺)
3 imass1 6075 . . . . . . . . 9 (𝐹𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
54unissd 4884 . . . . . . 7 (𝜑 (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
6 setrecsss.1 . . . . . . . . 9 (𝜑 → Fun 𝐺)
7 funss 6538 . . . . . . . . 9 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
82, 6, 7sylc 65 . . . . . . . 8 (𝜑 → Fun 𝐹)
9 funfv 6951 . . . . . . . 8 (Fun 𝐹 → (𝐹𝑥) = (𝐹 “ {𝑥}))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐹𝑥) = (𝐹 “ {𝑥}))
11 funfv 6951 . . . . . . . 8 (Fun 𝐺 → (𝐺𝑥) = (𝐺 “ {𝑥}))
126, 11syl 17 . . . . . . 7 (𝜑 → (𝐺𝑥) = (𝐺 “ {𝑥}))
135, 10, 123sstr4d 4005 . . . . . 6 (𝜑 → (𝐹𝑥) ⊆ (𝐺𝑥))
1413adantr 480 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ (𝐺𝑥))
15 eqid 2730 . . . . . 6 setrecs(𝐺) = setrecs(𝐺)
16 vex 3454 . . . . . . 7 𝑥 ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V)
18 simpr 484 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺))
1915, 17, 18setrec1 49684 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐺𝑥) ⊆ setrecs(𝐺))
2014, 19sstrd 3960 . . . 4 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ setrecs(𝐺))
2120ex 412 . . 3 (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
2221alrimiv 1927 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
231, 22setrec2v 49689 1 (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592   cuni 4874  cima 5644  Fun wfun 6508  cfv 6514  setrecscsetrecs 49676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725  df-setrecs 49677
This theorem is referenced by:  setrecsres  49695
  Copyright terms: Public domain W3C validator