Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsss Structured version   Visualization version   GIF version

Theorem setrecsss 47232
Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.)
Hypotheses
Ref Expression
setrecsss.1 (𝜑 → Fun 𝐺)
setrecsss.2 (𝜑𝐹𝐺)
Assertion
Ref Expression
setrecsss (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))

Proof of Theorem setrecsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 setrecs(𝐹) = setrecs(𝐹)
2 setrecsss.2 . . . . . . . . 9 (𝜑𝐹𝐺)
3 imass1 6054 . . . . . . . . 9 (𝐹𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
54unissd 4876 . . . . . . 7 (𝜑 (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
6 setrecsss.1 . . . . . . . . 9 (𝜑 → Fun 𝐺)
7 funss 6521 . . . . . . . . 9 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
82, 6, 7sylc 65 . . . . . . . 8 (𝜑 → Fun 𝐹)
9 funfv 6929 . . . . . . . 8 (Fun 𝐹 → (𝐹𝑥) = (𝐹 “ {𝑥}))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐹𝑥) = (𝐹 “ {𝑥}))
11 funfv 6929 . . . . . . . 8 (Fun 𝐺 → (𝐺𝑥) = (𝐺 “ {𝑥}))
126, 11syl 17 . . . . . . 7 (𝜑 → (𝐺𝑥) = (𝐺 “ {𝑥}))
135, 10, 123sstr4d 3992 . . . . . 6 (𝜑 → (𝐹𝑥) ⊆ (𝐺𝑥))
1413adantr 482 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ (𝐺𝑥))
15 eqid 2733 . . . . . 6 setrecs(𝐺) = setrecs(𝐺)
16 vex 3448 . . . . . . 7 𝑥 ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V)
18 simpr 486 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺))
1915, 17, 18setrec1 47222 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐺𝑥) ⊆ setrecs(𝐺))
2014, 19sstrd 3955 . . . 4 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ setrecs(𝐺))
2120ex 414 . . 3 (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
2221alrimiv 1931 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
231, 22setrec2v 47227 1 (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  wss 3911  {csn 4587   cuni 4866  cima 5637  Fun wfun 6491  cfv 6497  setrecscsetrecs 47214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-reg 9533  ax-inf2 9582
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-r1 9705  df-rank 9706  df-setrecs 47215
This theorem is referenced by:  setrecsres  47233
  Copyright terms: Public domain W3C validator