Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrecsss | Structured version Visualization version GIF version |
Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.) |
Ref | Expression |
---|---|
setrecsss.1 | ⊢ (𝜑 → Fun 𝐺) |
setrecsss.2 | ⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
Ref | Expression |
---|---|
setrecsss | ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
2 | setrecsss.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ⊆ 𝐺) | |
3 | imass1 5998 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥})) |
5 | 4 | unissd 4846 | . . . . . . 7 ⊢ (𝜑 → ∪ (𝐹 “ {𝑥}) ⊆ ∪ (𝐺 “ {𝑥})) |
6 | setrecsss.1 | . . . . . . . . 9 ⊢ (𝜑 → Fun 𝐺) | |
7 | funss 6437 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | |
8 | 2, 6, 7 | sylc 65 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
9 | funfv 6837 | . . . . . . . 8 ⊢ (Fun 𝐹 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝑥) = ∪ (𝐹 “ {𝑥})) |
11 | funfv 6837 | . . . . . . . 8 ⊢ (Fun 𝐺 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) | |
12 | 6, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑥) = ∪ (𝐺 “ {𝑥})) |
13 | 5, 10, 12 | 3sstr4d 3964 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ (𝐺‘𝑥)) |
15 | eqid 2738 | . . . . . 6 ⊢ setrecs(𝐺) = setrecs(𝐺) | |
16 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V) |
18 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺)) | |
19 | 15, 17, 18 | setrec1 46283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐺‘𝑥) ⊆ setrecs(𝐺)) |
20 | 14, 19 | sstrd 3927 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ setrecs(𝐺)) → (𝐹‘𝑥) ⊆ setrecs(𝐺)) |
21 | 20 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
22 | 21 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹‘𝑥) ⊆ setrecs(𝐺))) |
23 | 1, 22 | setrec2v 46288 | 1 ⊢ (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 “ cima 5583 Fun wfun 6412 ‘cfv 6418 setrecscsetrecs 46275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 df-setrecs 46276 |
This theorem is referenced by: setrecsres 46293 |
Copyright terms: Public domain | W3C validator |