Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsss Structured version   Visualization version   GIF version

Theorem setrecsss 45621
 Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.)
Hypotheses
Ref Expression
setrecsss.1 (𝜑 → Fun 𝐺)
setrecsss.2 (𝜑𝐹𝐺)
Assertion
Ref Expression
setrecsss (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))

Proof of Theorem setrecsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 setrecs(𝐹) = setrecs(𝐹)
2 setrecsss.2 . . . . . . . . 9 (𝜑𝐹𝐺)
3 imass1 5936 . . . . . . . . 9 (𝐹𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
54unissd 4808 . . . . . . 7 (𝜑 (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
6 setrecsss.1 . . . . . . . . 9 (𝜑 → Fun 𝐺)
7 funss 6354 . . . . . . . . 9 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
82, 6, 7sylc 65 . . . . . . . 8 (𝜑 → Fun 𝐹)
9 funfv 6739 . . . . . . . 8 (Fun 𝐹 → (𝐹𝑥) = (𝐹 “ {𝑥}))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐹𝑥) = (𝐹 “ {𝑥}))
11 funfv 6739 . . . . . . . 8 (Fun 𝐺 → (𝐺𝑥) = (𝐺 “ {𝑥}))
126, 11syl 17 . . . . . . 7 (𝜑 → (𝐺𝑥) = (𝐺 “ {𝑥}))
135, 10, 123sstr4d 3939 . . . . . 6 (𝜑 → (𝐹𝑥) ⊆ (𝐺𝑥))
1413adantr 484 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ (𝐺𝑥))
15 eqid 2758 . . . . . 6 setrecs(𝐺) = setrecs(𝐺)
16 vex 3413 . . . . . . 7 𝑥 ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V)
18 simpr 488 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺))
1915, 17, 18setrec1 45612 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐺𝑥) ⊆ setrecs(𝐺))
2014, 19sstrd 3902 . . . 4 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ setrecs(𝐺))
2120ex 416 . . 3 (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
2221alrimiv 1928 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
231, 22setrec2v 45617 1 (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ⊆ wss 3858  {csn 4522  ∪ cuni 4798   “ cima 5527  Fun wfun 6329  ‘cfv 6335  setrecscsetrecs 45604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-reg 9089  ax-inf2 9137 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-r1 9226  df-rank 9227  df-setrecs 45605 This theorem is referenced by:  setrecsres  45622
 Copyright terms: Public domain W3C validator