Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsss Structured version   Visualization version   GIF version

Theorem setrecsss 46406
Description: The setrecs operator respects the subset relation between two functions 𝐹 and 𝐺. (Contributed by Emmett Weisz, 13-Mar-2022.)
Hypotheses
Ref Expression
setrecsss.1 (𝜑 → Fun 𝐺)
setrecsss.2 (𝜑𝐹𝐺)
Assertion
Ref Expression
setrecsss (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))

Proof of Theorem setrecsss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 setrecs(𝐹) = setrecs(𝐹)
2 setrecsss.2 . . . . . . . . 9 (𝜑𝐹𝐺)
3 imass1 6009 . . . . . . . . 9 (𝐹𝐺 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
54unissd 4849 . . . . . . 7 (𝜑 (𝐹 “ {𝑥}) ⊆ (𝐺 “ {𝑥}))
6 setrecsss.1 . . . . . . . . 9 (𝜑 → Fun 𝐺)
7 funss 6453 . . . . . . . . 9 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
82, 6, 7sylc 65 . . . . . . . 8 (𝜑 → Fun 𝐹)
9 funfv 6855 . . . . . . . 8 (Fun 𝐹 → (𝐹𝑥) = (𝐹 “ {𝑥}))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝐹𝑥) = (𝐹 “ {𝑥}))
11 funfv 6855 . . . . . . . 8 (Fun 𝐺 → (𝐺𝑥) = (𝐺 “ {𝑥}))
126, 11syl 17 . . . . . . 7 (𝜑 → (𝐺𝑥) = (𝐺 “ {𝑥}))
135, 10, 123sstr4d 3968 . . . . . 6 (𝜑 → (𝐹𝑥) ⊆ (𝐺𝑥))
1413adantr 481 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ (𝐺𝑥))
15 eqid 2738 . . . . . 6 setrecs(𝐺) = setrecs(𝐺)
16 vex 3436 . . . . . . 7 𝑥 ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ∈ V)
18 simpr 485 . . . . . 6 ((𝜑𝑥 ⊆ setrecs(𝐺)) → 𝑥 ⊆ setrecs(𝐺))
1915, 17, 18setrec1 46397 . . . . 5 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐺𝑥) ⊆ setrecs(𝐺))
2014, 19sstrd 3931 . . . 4 ((𝜑𝑥 ⊆ setrecs(𝐺)) → (𝐹𝑥) ⊆ setrecs(𝐺))
2120ex 413 . . 3 (𝜑 → (𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
2221alrimiv 1930 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs(𝐺) → (𝐹𝑥) ⊆ setrecs(𝐺)))
231, 22setrec2v 46402 1 (𝜑 → setrecs(𝐹) ⊆ setrecs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  {csn 4561   cuni 4839  cima 5592  Fun wfun 6427  cfv 6433  setrecscsetrecs 46389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523  df-setrecs 46390
This theorem is referenced by:  setrecsres  46407
  Copyright terms: Public domain W3C validator