MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Visualization version   GIF version

Theorem funsssuppss 8189
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))

Proof of Theorem funsssuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funss 6555 . . . . . . . . . 10 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
21impcom 407 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → Fun 𝐹)
32funfnd 6567 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐹 Fn dom 𝐹)
4 funfn 6566 . . . . . . . . . 10 (Fun 𝐺𝐺 Fn dom 𝐺)
54biimpi 216 . . . . . . . . 9 (Fun 𝐺𝐺 Fn dom 𝐺)
65adantr 480 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐺 Fn dom 𝐺)
73, 6jca 511 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
873adant3 1132 . . . . . 6 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
98adantr 480 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
10 dmss 5882 . . . . . . . 8 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
11103ad2ant2 1134 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐹 ⊆ dom 𝐺)
1211adantr 480 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺)
13 dmexg 7897 . . . . . . . 8 (𝐺𝑉 → dom 𝐺 ∈ V)
14133ad2ant3 1135 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐺 ∈ V)
1514adantr 480 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V)
16 simpr 484 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1712, 15, 163jca 1128 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))
189, 17jca 511 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)))
19 funssfv 6897 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
20193expa 1118 . . . . . . . 8 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
21 eqeq1 2739 . . . . . . . . 9 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 ↔ (𝐹𝑥) = 𝑍))
2221biimpd 229 . . . . . . . 8 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2320, 22syl 17 . . . . . . 7 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2423ralrimiva 3132 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
25243adant3 1132 . . . . 5 ((Fun 𝐺𝐹𝐺𝐺𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2625adantr 480 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
27 suppfnss 8188 . . . 4 (((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
2818, 26, 27sylc 65 . . 3 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
2928expcom 413 . 2 (𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
30 ssid 3981 . . . 4 ∅ ⊆ ∅
31 simpr 484 . . . . . 6 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
32 supp0prc 8162 . . . . . 6 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3331, 32nsyl5 159 . . . . 5 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
34 simpr 484 . . . . . 6 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
35 supp0prc 8162 . . . . . 6 (¬ (𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅)
3634, 35nsyl5 159 . . . . 5 𝑍 ∈ V → (𝐺 supp 𝑍) = ∅)
3733, 36sseq12d 3992 . . . 4 𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆ ∅))
3830, 37mpbiri 258 . . 3 𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
3938a1d 25 . 2 𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
4029, 39pm2.61i 182 1 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  c0 4308  dom cdm 5654  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-supp 8160
This theorem is referenced by:  fsuppss  9395  tdeglem4  26017
  Copyright terms: Public domain W3C validator