Step | Hyp | Ref
| Expression |
1 | | funss 6437 |
. . . . . . . . . 10
⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) |
2 | 1 | impcom 407 |
. . . . . . . . 9
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → Fun 𝐹) |
3 | 2 | funfnd 6449 |
. . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → 𝐹 Fn dom 𝐹) |
4 | | funfn 6448 |
. . . . . . . . . 10
⊢ (Fun
𝐺 ↔ 𝐺 Fn dom 𝐺) |
5 | 4 | biimpi 215 |
. . . . . . . . 9
⊢ (Fun
𝐺 → 𝐺 Fn dom 𝐺) |
6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → 𝐺 Fn dom 𝐺) |
7 | 3, 6 | jca 511 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → (𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺)) |
8 | 7 | 3adant3 1130 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺)) |
9 | 8 | adantr 480 |
. . . . 5
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺)) |
10 | | dmss 5800 |
. . . . . . . 8
⊢ (𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺) |
11 | 10 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → dom 𝐹 ⊆ dom 𝐺) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺) |
13 | | dmexg 7724 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝑉 → dom 𝐺 ∈ V) |
14 | 13 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → dom 𝐺 ∈ V) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V) |
16 | | simpr 484 |
. . . . . 6
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V) |
17 | 12, 15, 16 | 3jca 1126 |
. . . . 5
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) |
18 | 9, 17 | jca 511 |
. . . 4
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))) |
19 | | funssfv 6777 |
. . . . . . . . 9
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝑥 ∈ dom 𝐹) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
20 | 19 | 3expa 1116 |
. . . . . . . 8
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
21 | | eqeq1 2742 |
. . . . . . . . 9
⊢ ((𝐺‘𝑥) = (𝐹‘𝑥) → ((𝐺‘𝑥) = 𝑍 ↔ (𝐹‘𝑥) = 𝑍)) |
22 | 21 | biimpd 228 |
. . . . . . . 8
⊢ ((𝐺‘𝑥) = (𝐹‘𝑥) → ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) |
23 | 20, 22 | syl 17 |
. . . . . . 7
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) |
24 | 23 | ralrimiva 3107 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) |
25 | 24 | 3adant3 1130 |
. . . . 5
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) |
26 | 25 | adantr 480 |
. . . 4
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) |
27 | | suppfnss 7976 |
. . . 4
⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) |
28 | 18, 26, 27 | sylc 65 |
. . 3
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
29 | 28 | expcom 413 |
. 2
⊢ (𝑍 ∈ V → ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) |
30 | | ssid 3939 |
. . . 4
⊢ ∅
⊆ ∅ |
31 | | simpr 484 |
. . . . . 6
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) |
32 | | supp0prc 7951 |
. . . . . 6
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) |
33 | 31, 32 | nsyl5 159 |
. . . . 5
⊢ (¬
𝑍 ∈ V → (𝐹 supp 𝑍) = ∅) |
34 | | simpr 484 |
. . . . . 6
⊢ ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) |
35 | | supp0prc 7951 |
. . . . . 6
⊢ (¬
(𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅) |
36 | 34, 35 | nsyl5 159 |
. . . . 5
⊢ (¬
𝑍 ∈ V → (𝐺 supp 𝑍) = ∅) |
37 | 33, 36 | sseq12d 3950 |
. . . 4
⊢ (¬
𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆
∅)) |
38 | 30, 37 | mpbiri 257 |
. . 3
⊢ (¬
𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
39 | 38 | a1d 25 |
. 2
⊢ (¬
𝑍 ∈ V → ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) |
40 | 29, 39 | pm2.61i 182 |
1
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |