MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Visualization version   GIF version

Theorem funsssuppss 7858
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))

Proof of Theorem funsssuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funss 6376 . . . . . . . . . 10 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
21impcom 410 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → Fun 𝐹)
32funfnd 6388 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐹 Fn dom 𝐹)
4 funfn 6387 . . . . . . . . . 10 (Fun 𝐺𝐺 Fn dom 𝐺)
54biimpi 218 . . . . . . . . 9 (Fun 𝐺𝐺 Fn dom 𝐺)
65adantr 483 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐺 Fn dom 𝐺)
73, 6jca 514 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
873adant3 1128 . . . . . 6 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
98adantr 483 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
10 dmss 5773 . . . . . . . 8 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
11103ad2ant2 1130 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐹 ⊆ dom 𝐺)
1211adantr 483 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺)
13 dmexg 7615 . . . . . . . 8 (𝐺𝑉 → dom 𝐺 ∈ V)
14133ad2ant3 1131 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐺 ∈ V)
1514adantr 483 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V)
16 simpr 487 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1712, 15, 163jca 1124 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))
189, 17jca 514 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)))
19 funssfv 6693 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
20193expa 1114 . . . . . . . 8 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
21 eqeq1 2827 . . . . . . . . 9 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 ↔ (𝐹𝑥) = 𝑍))
2221biimpd 231 . . . . . . . 8 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2320, 22syl 17 . . . . . . 7 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2423ralrimiva 3184 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
25243adant3 1128 . . . . 5 ((Fun 𝐺𝐹𝐺𝐺𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2625adantr 483 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
27 suppfnss 7857 . . . 4 (((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
2818, 26, 27sylc 65 . . 3 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
2928expcom 416 . 2 (𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
30 ssid 3991 . . . 4 ∅ ⊆ ∅
31 simpr 487 . . . . . . 7 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
3231con3i 157 . . . . . 6 𝑍 ∈ V → ¬ (𝐹 ∈ V ∧ 𝑍 ∈ V))
33 supp0prc 7835 . . . . . 6 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3432, 33syl 17 . . . . 5 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
35 simpr 487 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
3635con3i 157 . . . . . 6 𝑍 ∈ V → ¬ (𝐺 ∈ V ∧ 𝑍 ∈ V))
37 supp0prc 7835 . . . . . 6 (¬ (𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅)
3836, 37syl 17 . . . . 5 𝑍 ∈ V → (𝐺 supp 𝑍) = ∅)
3934, 38sseq12d 4002 . . . 4 𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆ ∅))
4030, 39mpbiri 260 . . 3 𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
4140a1d 25 . 2 𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
4229, 41pm2.61i 184 1 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  c0 4293  dom cdm 5557  Fun wfun 6351   Fn wfn 6352  cfv 6357  (class class class)co 7158   supp csupp 7832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-supp 7833
This theorem is referenced by:  tdeglem4  24656
  Copyright terms: Public domain W3C validator