MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Visualization version   GIF version

Theorem funsssuppss 8141
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))

Proof of Theorem funsssuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funss 6540 . . . . . . . . . 10 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
21impcom 408 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → Fun 𝐹)
32funfnd 6552 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐹 Fn dom 𝐹)
4 funfn 6551 . . . . . . . . . 10 (Fun 𝐺𝐺 Fn dom 𝐺)
54biimpi 215 . . . . . . . . 9 (Fun 𝐺𝐺 Fn dom 𝐺)
65adantr 481 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐺 Fn dom 𝐺)
73, 6jca 512 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
873adant3 1132 . . . . . 6 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
98adantr 481 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
10 dmss 5878 . . . . . . . 8 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
11103ad2ant2 1134 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐹 ⊆ dom 𝐺)
1211adantr 481 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺)
13 dmexg 7860 . . . . . . . 8 (𝐺𝑉 → dom 𝐺 ∈ V)
14133ad2ant3 1135 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐺 ∈ V)
1514adantr 481 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V)
16 simpr 485 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1712, 15, 163jca 1128 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))
189, 17jca 512 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)))
19 funssfv 6883 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
20193expa 1118 . . . . . . . 8 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
21 eqeq1 2735 . . . . . . . . 9 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 ↔ (𝐹𝑥) = 𝑍))
2221biimpd 228 . . . . . . . 8 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2320, 22syl 17 . . . . . . 7 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2423ralrimiva 3145 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
25243adant3 1132 . . . . 5 ((Fun 𝐺𝐹𝐺𝐺𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2625adantr 481 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
27 suppfnss 8140 . . . 4 (((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
2818, 26, 27sylc 65 . . 3 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
2928expcom 414 . 2 (𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
30 ssid 3984 . . . 4 ∅ ⊆ ∅
31 simpr 485 . . . . . 6 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
32 supp0prc 8115 . . . . . 6 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3331, 32nsyl5 159 . . . . 5 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
34 simpr 485 . . . . . 6 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
35 supp0prc 8115 . . . . . 6 (¬ (𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅)
3634, 35nsyl5 159 . . . . 5 𝑍 ∈ V → (𝐺 supp 𝑍) = ∅)
3733, 36sseq12d 3995 . . . 4 𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆ ∅))
3830, 37mpbiri 257 . . 3 𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
3938a1d 25 . 2 𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
4029, 39pm2.61i 182 1 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  Vcvv 3459  wss 3928  c0 4302  dom cdm 5653  Fun wfun 6510   Fn wfn 6511  cfv 6516  (class class class)co 7377   supp csupp 8112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-nul 4303  df-if 4507  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-id 5551  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-ov 7380  df-oprab 7381  df-mpo 7382  df-supp 8113
This theorem is referenced by:  tdeglem4  25476  tdeglem4OLD  25477
  Copyright terms: Public domain W3C validator