MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Visualization version   GIF version

Theorem funsssuppss 8177
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))

Proof of Theorem funsssuppss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funss 6566 . . . . . . . . . 10 (𝐹𝐺 → (Fun 𝐺 → Fun 𝐹))
21impcom 406 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺) → Fun 𝐹)
32funfnd 6578 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐹 Fn dom 𝐹)
4 funfn 6577 . . . . . . . . . 10 (Fun 𝐺𝐺 Fn dom 𝐺)
54biimpi 215 . . . . . . . . 9 (Fun 𝐺𝐺 Fn dom 𝐺)
65adantr 479 . . . . . . . 8 ((Fun 𝐺𝐹𝐺) → 𝐺 Fn dom 𝐺)
73, 6jca 510 . . . . . . 7 ((Fun 𝐺𝐹𝐺) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
873adant3 1130 . . . . . 6 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
98adantr 479 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺))
10 dmss 5901 . . . . . . . 8 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
11103ad2ant2 1132 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐹 ⊆ dom 𝐺)
1211adantr 479 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺)
13 dmexg 7896 . . . . . . . 8 (𝐺𝑉 → dom 𝐺 ∈ V)
14133ad2ant3 1133 . . . . . . 7 ((Fun 𝐺𝐹𝐺𝐺𝑉) → dom 𝐺 ∈ V)
1514adantr 479 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V)
16 simpr 483 . . . . . 6 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
1712, 15, 163jca 1126 . . . . 5 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))
189, 17jca 510 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)))
19 funssfv 6911 . . . . . . . . 9 ((Fun 𝐺𝐹𝐺𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
20193expa 1116 . . . . . . . 8 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺𝑥) = (𝐹𝑥))
21 eqeq1 2734 . . . . . . . . 9 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 ↔ (𝐹𝑥) = 𝑍))
2221biimpd 228 . . . . . . . 8 ((𝐺𝑥) = (𝐹𝑥) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2320, 22syl 17 . . . . . . 7 (((Fun 𝐺𝐹𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2423ralrimiva 3144 . . . . . 6 ((Fun 𝐺𝐹𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
25243adant3 1130 . . . . 5 ((Fun 𝐺𝐹𝐺𝐺𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
2625adantr 479 . . . 4 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍))
27 suppfnss 8176 . . . 4 (((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
2818, 26, 27sylc 65 . . 3 (((Fun 𝐺𝐹𝐺𝐺𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
2928expcom 412 . 2 (𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
30 ssid 4003 . . . 4 ∅ ⊆ ∅
31 simpr 483 . . . . . 6 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
32 supp0prc 8151 . . . . . 6 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3331, 32nsyl5 159 . . . . 5 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
34 simpr 483 . . . . . 6 ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
35 supp0prc 8151 . . . . . 6 (¬ (𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅)
3634, 35nsyl5 159 . . . . 5 𝑍 ∈ V → (𝐺 supp 𝑍) = ∅)
3733, 36sseq12d 4014 . . . 4 𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆ ∅))
3830, 37mpbiri 257 . . 3 𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
3938a1d 25 . 2 𝑍 ∈ V → ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
4029, 39pm2.61i 182 1 ((Fun 𝐺𝐹𝐺𝐺𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  wss 3947  c0 4321  dom cdm 5675  Fun wfun 6536   Fn wfn 6537  cfv 6542  (class class class)co 7411   supp csupp 8148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-supp 8149
This theorem is referenced by:  tdeglem4  25812  tdeglem4OLD  25813  fsuppss  41371
  Copyright terms: Public domain W3C validator