| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | funss 6585 | . . . . . . . . . 10
⊢ (𝐹 ⊆ 𝐺 → (Fun 𝐺 → Fun 𝐹)) | 
| 2 | 1 | impcom 407 | . . . . . . . . 9
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → Fun 𝐹) | 
| 3 | 2 | funfnd 6597 | . . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → 𝐹 Fn dom 𝐹) | 
| 4 |  | funfn 6596 | . . . . . . . . . 10
⊢ (Fun
𝐺 ↔ 𝐺 Fn dom 𝐺) | 
| 5 | 4 | biimpi 216 | . . . . . . . . 9
⊢ (Fun
𝐺 → 𝐺 Fn dom 𝐺) | 
| 6 | 5 | adantr 480 | . . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → 𝐺 Fn dom 𝐺) | 
| 7 | 3, 6 | jca 511 | . . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → (𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺)) | 
| 8 | 7 | 3adant3 1133 | . . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺)) | 
| 9 | 8 | adantr 480 | . . . . 5
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → (𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺)) | 
| 10 |  | dmss 5913 | . . . . . . . 8
⊢ (𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺) | 
| 11 | 10 | 3ad2ant2 1135 | . . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → dom 𝐹 ⊆ dom 𝐺) | 
| 12 | 11 | adantr 480 | . . . . . 6
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → dom 𝐹 ⊆ dom 𝐺) | 
| 13 |  | dmexg 7923 | . . . . . . . 8
⊢ (𝐺 ∈ 𝑉 → dom 𝐺 ∈ V) | 
| 14 | 13 | 3ad2ant3 1136 | . . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → dom 𝐺 ∈ V) | 
| 15 | 14 | adantr 480 | . . . . . 6
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → dom 𝐺 ∈ V) | 
| 16 |  | simpr 484 | . . . . . 6
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | 
| 17 | 12, 15, 16 | 3jca 1129 | . . . . 5
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) | 
| 18 | 9, 17 | jca 511 | . . . 4
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → ((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V))) | 
| 19 |  | funssfv 6927 | . . . . . . . . 9
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝑥 ∈ dom 𝐹) → (𝐺‘𝑥) = (𝐹‘𝑥)) | 
| 20 | 19 | 3expa 1119 | . . . . . . . 8
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ dom 𝐹) → (𝐺‘𝑥) = (𝐹‘𝑥)) | 
| 21 |  | eqeq1 2741 | . . . . . . . . 9
⊢ ((𝐺‘𝑥) = (𝐹‘𝑥) → ((𝐺‘𝑥) = 𝑍 ↔ (𝐹‘𝑥) = 𝑍)) | 
| 22 | 21 | biimpd 229 | . . . . . . . 8
⊢ ((𝐺‘𝑥) = (𝐹‘𝑥) → ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) | 
| 23 | 20, 22 | syl 17 | . . . . . . 7
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ dom 𝐹) → ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) | 
| 24 | 23 | ralrimiva 3146 | . . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺) → ∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) | 
| 25 | 24 | 3adant3 1133 | . . . . 5
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → ∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) | 
| 26 | 25 | adantr 480 | . . . 4
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → ∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) | 
| 27 |  | suppfnss 8214 | . . . 4
⊢ (((𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺) ∧ (dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V)) → (∀𝑥 ∈ dom 𝐹((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) | 
| 28 | 18, 26, 27 | sylc 65 | . . 3
⊢ (((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | 
| 29 | 28 | expcom 413 | . 2
⊢ (𝑍 ∈ V → ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) | 
| 30 |  | ssid 4006 | . . . 4
⊢ ∅
⊆ ∅ | 
| 31 |  | simpr 484 | . . . . . 6
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | 
| 32 |  | supp0prc 8188 | . . . . . 6
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | 
| 33 | 31, 32 | nsyl5 159 | . . . . 5
⊢ (¬
𝑍 ∈ V → (𝐹 supp 𝑍) = ∅) | 
| 34 |  | simpr 484 | . . . . . 6
⊢ ((𝐺 ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | 
| 35 |  | supp0prc 8188 | . . . . . 6
⊢ (¬
(𝐺 ∈ V ∧ 𝑍 ∈ V) → (𝐺 supp 𝑍) = ∅) | 
| 36 | 34, 35 | nsyl5 159 | . . . . 5
⊢ (¬
𝑍 ∈ V → (𝐺 supp 𝑍) = ∅) | 
| 37 | 33, 36 | sseq12d 4017 | . . . 4
⊢ (¬
𝑍 ∈ V → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ ∅ ⊆
∅)) | 
| 38 | 30, 37 | mpbiri 258 | . . 3
⊢ (¬
𝑍 ∈ V → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | 
| 39 | 38 | a1d 25 | . 2
⊢ (¬
𝑍 ∈ V → ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) | 
| 40 | 29, 39 | pm2.61i 182 | 1
⊢ ((Fun
𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |