MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strssd Structured version   Visualization version   GIF version

Theorem strssd 16508
Description: Deduction version of strss 16509. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strssd.e 𝐸 = Slot (𝐸‘ndx)
strssd.t (𝜑𝑇𝑉)
strssd.f (𝜑 → Fun 𝑇)
strssd.s (𝜑𝑆𝑇)
strssd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strssd (𝜑 → (𝐸𝑇) = (𝐸𝑆))

Proof of Theorem strssd
StepHypRef Expression
1 strssd.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strssd.t . . 3 (𝜑𝑇𝑉)
3 strssd.f . . 3 (𝜑 → Fun 𝑇)
4 strssd.s . . . 4 (𝜑𝑆𝑇)
5 strssd.n . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
64, 5sseldd 3943 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑇)
71, 2, 3, 6strfvd 16503 . 2 (𝜑𝐶 = (𝐸𝑇))
82, 4ssexd 5200 . . 3 (𝜑𝑆 ∈ V)
9 funss 6346 . . . 4 (𝑆𝑇 → (Fun 𝑇 → Fun 𝑆))
104, 3, 9sylc 65 . . 3 (𝜑 → Fun 𝑆)
111, 8, 10, 5strfvd 16503 . 2 (𝜑𝐶 = (𝐸𝑆))
127, 11eqtr3d 2857 1 (𝜑 → (𝐸𝑇) = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3470  wss 3909  cop 4545  Fun wfun 6321  cfv 6327  ndxcnx 16455  Slot cslot 16457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pr 5302
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3472  df-sbc 3749  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4811  df-br 5039  df-opab 5101  df-mpt 5119  df-id 5432  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-iota 6286  df-fun 6329  df-fv 6335  df-slot 16462
This theorem is referenced by:  strss  16509
  Copyright terms: Public domain W3C validator