MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strssd Structured version   Visualization version   GIF version

Theorem strssd 16907
Description: Deduction version of strss 16908. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strssd.e 𝐸 = Slot (𝐸‘ndx)
strssd.t (𝜑𝑇𝑉)
strssd.f (𝜑 → Fun 𝑇)
strssd.s (𝜑𝑆𝑇)
strssd.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
Assertion
Ref Expression
strssd (𝜑 → (𝐸𝑇) = (𝐸𝑆))

Proof of Theorem strssd
StepHypRef Expression
1 strssd.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strssd.t . . 3 (𝜑𝑇𝑉)
3 strssd.f . . 3 (𝜑 → Fun 𝑇)
4 strssd.s . . . 4 (𝜑𝑆𝑇)
5 strssd.n . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
64, 5sseldd 3922 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑇)
71, 2, 3, 6strfvd 16902 . 2 (𝜑𝐶 = (𝐸𝑇))
82, 4ssexd 5248 . . 3 (𝜑𝑆 ∈ V)
9 funss 6453 . . . 4 (𝑆𝑇 → (Fun 𝑇 → Fun 𝑆))
104, 3, 9sylc 65 . . 3 (𝜑 → Fun 𝑆)
111, 8, 10, 5strfvd 16902 . 2 (𝜑𝐶 = (𝐸𝑆))
127, 11eqtr3d 2780 1 (𝜑 → (𝐸𝑇) = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cop 4567  Fun wfun 6427  cfv 6433  Slot cslot 16882  ndxcnx 16894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-slot 16883
This theorem is referenced by:  strss  16908
  Copyright terms: Public domain W3C validator