![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strssd | Structured version Visualization version GIF version |
Description: Deduction version of strss 16235. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strssd.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strssd.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
strssd.f | ⊢ (𝜑 → Fun 𝑇) |
strssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
strssd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
Ref | Expression |
---|---|
strssd | ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strssd.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strssd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
3 | strssd.f | . . 3 ⊢ (𝜑 → Fun 𝑇) | |
4 | strssd.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
5 | strssd.n | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3799 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑇) |
7 | 1, 2, 3, 6 | strfvd 16229 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑇)) |
8 | 2, 4 | ssexd 5000 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
9 | funss 6120 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 → (Fun 𝑇 → Fun 𝑆)) | |
10 | 4, 3, 9 | sylc 65 | . . 3 ⊢ (𝜑 → Fun 𝑆) |
11 | 1, 8, 10, 5 | strfvd 16229 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
12 | 7, 11 | eqtr3d 2835 | 1 ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ⊆ wss 3769 〈cop 4374 Fun wfun 6095 ‘cfv 6101 ndxcnx 16181 Slot cslot 16183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-slot 16188 |
This theorem is referenced by: strss 16235 |
Copyright terms: Public domain | W3C validator |