Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strssd | Structured version Visualization version GIF version |
Description: Deduction version of strss 16908. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strssd.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strssd.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
strssd.f | ⊢ (𝜑 → Fun 𝑇) |
strssd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
strssd.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
Ref | Expression |
---|---|
strssd | ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strssd.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strssd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
3 | strssd.f | . . 3 ⊢ (𝜑 → Fun 𝑇) | |
4 | strssd.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
5 | strssd.n | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
6 | 4, 5 | sseldd 3922 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑇) |
7 | 1, 2, 3, 6 | strfvd 16902 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑇)) |
8 | 2, 4 | ssexd 5248 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
9 | funss 6453 | . . . 4 ⊢ (𝑆 ⊆ 𝑇 → (Fun 𝑇 → Fun 𝑆)) | |
10 | 4, 3, 9 | sylc 65 | . . 3 ⊢ (𝜑 → Fun 𝑆) |
11 | 1, 8, 10, 5 | strfvd 16902 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
12 | 7, 11 | eqtr3d 2780 | 1 ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 〈cop 4567 Fun wfun 6427 ‘cfv 6433 Slot cslot 16882 ndxcnx 16894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-slot 16883 |
This theorem is referenced by: strss 16908 |
Copyright terms: Public domain | W3C validator |