Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvixp2 Structured version   Visualization version   GIF version

Theorem fvixp2 45209
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Assertion
Ref Expression
fvixp2 ((𝐹X𝑥𝐴 𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fvixp2
StepHypRef Expression
1 elixp2 8942 . . 3 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
21simp3bi 1147 . 2 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
32r19.21bi 3250 1 ((𝐹X𝑥𝐴 𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3060  Vcvv 3479   Fn wfn 6555  cfv 6560  Xcixp 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568  df-ixp 8939
This theorem is referenced by:  rrxsnicc  46320  ioorrnopnlem  46324  ioorrnopnxrlem  46326  hspdifhsp  46636  hoiqssbllem2  46643  iinhoiicclem  46693  iunhoiioolem  46695
  Copyright terms: Public domain W3C validator