Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmap Structured version   Visualization version   GIF version

Theorem fvmap 45141
Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
fvmap.a (𝜑𝐴𝑉)
fvmap.b (𝜑𝐵𝑊)
fvmap.f (𝜑𝐹 ∈ (𝐴m 𝐵))
fvmap.c (𝜑𝐶𝐵)
Assertion
Ref Expression
fvmap (𝜑 → (𝐹𝐶) ∈ 𝐴)

Proof of Theorem fvmap
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 fvmap.c . 2 (𝜑𝐶𝐵)
3 fvmap.f . . . 4 (𝜑𝐹 ∈ (𝐴m 𝐵))
4 fvmap.a . . . . 5 (𝜑𝐴𝑉)
5 fvmap.b . . . . 5 (𝜑𝐵𝑊)
6 elmapg 8878 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
74, 5, 6syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
83, 7mpbid 232 . . 3 (𝜑𝐹:𝐵𝐴)
98ffvelcdmda 7104 . 2 ((𝜑𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)
101, 2, 9syl2anc 584 1 (𝜑 → (𝐹𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867
This theorem is referenced by:  ssmapsn  45159  hoidmvle  46556
  Copyright terms: Public domain W3C validator