| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmap | Structured version Visualization version GIF version | ||
| Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| fvmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fvmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fvmap.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) |
| fvmap.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fvmap | ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | fvmap.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 3 | fvmap.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) | |
| 4 | fvmap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | fvmap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | elmapg 8769 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
| 8 | 3, 7 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 9 | 8 | ffvelcdmda 7023 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ 𝐴) |
| 10 | 1, 2, 9 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 |
| This theorem is referenced by: ssmapsn 45337 hoidmvle 46722 |
| Copyright terms: Public domain | W3C validator |