![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmap | Structured version Visualization version GIF version |
Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
fvmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fvmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fvmap.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) |
fvmap.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fvmap | ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | fvmap.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
3 | fvmap.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) | |
4 | fvmap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | fvmap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | elmapg 8897 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) | |
7 | 4, 5, 6 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴)) |
8 | 3, 7 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
9 | 8 | ffvelcdmda 7118 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ 𝐴) |
10 | 1, 2, 9 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 |
This theorem is referenced by: ssmapsn 45123 hoidmvle 46521 |
Copyright terms: Public domain | W3C validator |