Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmap Structured version   Visualization version   GIF version

Theorem fvmap 45208
Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
fvmap.a (𝜑𝐴𝑉)
fvmap.b (𝜑𝐵𝑊)
fvmap.f (𝜑𝐹 ∈ (𝐴m 𝐵))
fvmap.c (𝜑𝐶𝐵)
Assertion
Ref Expression
fvmap (𝜑 → (𝐹𝐶) ∈ 𝐴)

Proof of Theorem fvmap
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 fvmap.c . 2 (𝜑𝐶𝐵)
3 fvmap.f . . . 4 (𝜑𝐹 ∈ (𝐴m 𝐵))
4 fvmap.a . . . . 5 (𝜑𝐴𝑉)
5 fvmap.b . . . . 5 (𝜑𝐵𝑊)
6 elmapg 8880 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
74, 5, 6syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
83, 7mpbid 232 . . 3 (𝜑𝐹:𝐵𝐴)
98ffvelcdmda 7103 . 2 ((𝜑𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)
101, 2, 9syl2anc 584 1 (𝜑 → (𝐹𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869
This theorem is referenced by:  ssmapsn  45226  hoidmvle  46620
  Copyright terms: Public domain W3C validator