Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem2 Structured version   Visualization version   GIF version

Theorem hoiqssbllem2 46544
Description: The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem2.i 𝑖𝜑
hoiqssbllem2.x (𝜑𝑋 ∈ Fin)
hoiqssbllem2.n (𝜑𝑋 ≠ ∅)
hoiqssbllem2.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem2.c (𝜑𝐶:𝑋⟶ℝ)
hoiqssbllem2.d (𝜑𝐷:𝑋⟶ℝ)
hoiqssbllem2.e (𝜑𝐸 ∈ ℝ+)
hoiqssbllem2.l ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
hoiqssbllem2.r ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
Assertion
Ref Expression
hoiqssbllem2 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Distinct variable groups:   𝐶,𝑖   𝐷,𝑖   𝑖,𝐸   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem hoiqssbllem2
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem2.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2 eqid 2740 . . . . . . . . . 10 (ℝ^‘𝑋) = (ℝ^‘𝑋)
3 eqid 2740 . . . . . . . . . 10 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
42, 3rrxdsfi 25464 . . . . . . . . 9 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
51, 4syl 17 . . . . . . . 8 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
65adantr 480 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
7 fveq1 6919 . . . . . . . . . . . . 13 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
87adantr 480 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑔𝑖) = (𝑌𝑖))
9 fveq1 6919 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑖) = (𝑓𝑖))
109adantl 481 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑖) = (𝑓𝑖))
118, 10oveq12d 7466 . . . . . . . . . . 11 ((𝑔 = 𝑌 = 𝑓) → ((𝑔𝑖) − (𝑖)) = ((𝑌𝑖) − (𝑓𝑖)))
1211oveq1d 7463 . . . . . . . . . 10 ((𝑔 = 𝑌 = 𝑓) → (((𝑔𝑖) − (𝑖))↑2) = (((𝑌𝑖) − (𝑓𝑖))↑2))
1312sumeq2sdv 15751 . . . . . . . . 9 ((𝑔 = 𝑌 = 𝑓) → Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2) = Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
1413fveq2d 6924 . . . . . . . 8 ((𝑔 = 𝑌 = 𝑓) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
1514adantl 481 . . . . . . 7 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ (𝑔 = 𝑌 = 𝑓)) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
16 hoiqssbllem2.y . . . . . . . 8 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
1716adantr 480 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑌 ∈ (ℝ ↑m 𝑋))
18 hoiqssbllem2.i . . . . . . . . . 10 𝑖𝜑
19 hoiqssbllem2.c . . . . . . . . . . 11 (𝜑𝐶:𝑋⟶ℝ)
2019ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
21 hoiqssbllem2.d . . . . . . . . . . . 12 (𝜑𝐷:𝑋⟶ℝ)
2221ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
2322rexrd 11340 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ*)
2418, 20, 23hoissrrn2 46499 . . . . . . . . 9 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑m 𝑋))
2524adantr 480 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑m 𝑋))
26 simpr 484 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
2725, 26sseldd 4009 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑m 𝑋))
28 fvexd 6935 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ V)
296, 15, 17, 27, 28ovmpod 7602 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
30 nfcv 2908 . . . . . . . . . 10 𝑖𝑓
31 nfixp1 8976 . . . . . . . . . 10 𝑖X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3230, 31nfel 2923 . . . . . . . . 9 𝑖 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3318, 32nfan 1898 . . . . . . . 8 𝑖(𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
34 simpl 482 . . . . . . . . 9 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝜑)
3534, 1syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑋 ∈ Fin)
36 elmapi 8907 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
3716, 36syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
3837ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
3934, 38sylan 579 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
40 icossre 13488 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ*) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4120, 23, 40syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4241adantlr 714 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
43 fvixp2 45106 . . . . . . . . . . . 12 ((𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4443adantll 713 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4542, 44sseldd 4009 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
4639, 45resubcld 11718 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝑌𝑖) − (𝑓𝑖)) ∈ ℝ)
47 2nn0 12570 . . . . . . . . . 10 2 ∈ ℕ0
4847a1i 11 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 2 ∈ ℕ0)
4946, 48reexpcld 14213 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
5033, 35, 49fsumreclf 45497 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
51 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
52 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
5351, 52oveq12d 7466 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
5453cbvixpv 8973 . . . . . . . . . . 11 X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) = X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))
5554eleq2i 2836 . . . . . . . . . 10 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5655biimpi 216 . . . . . . . . 9 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5756adantl 481 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
581adantr 480 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ∈ Fin)
59 simpll 766 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝜑)
6055biimpri 228 . . . . . . . . . . 11 (𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
6160ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
62 simpr 484 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑖𝑋)
6359, 61, 62, 49syl21anc 837 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
6446sqge0d 14187 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6559, 61, 62, 64syl21anc 837 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6658, 63, 65fsumge0 15843 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6734, 57, 66syl2anc 583 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6850, 67resqrtcld 15466 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ ℝ)
6929, 68eqeltrd 2844 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) ∈ ℝ)
7022, 20resubcld 11718 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
7170resqcld 14175 . . . . . . . 8 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
721, 71fsumrecl 15782 . . . . . . 7 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
7370sqge0d 14187 . . . . . . . 8 ((𝜑𝑖𝑋) → 0 ≤ (((𝐷𝑖) − (𝐶𝑖))↑2))
741, 71, 73fsumge0 15843 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
7572, 74resqrtcld 15466 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
7675adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
77 hoiqssbllem2.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
7877rpred 13099 . . . . . 6 (𝜑𝐸 ∈ ℝ)
7978adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ)
80 hoiqssbllem2.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
8180adantr 480 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ≠ ∅)
8271adantlr 714 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
8334, 22sylan 579 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
8434, 20sylan 579 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
8583, 84resubcld 11718 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
8620rexrd 11340 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ*)
8738rexrd 11340 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
88 2rp 13062 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℝ+)
90 hashnncl 14415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
911, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
9280, 91mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (♯‘𝑋) ∈ ℕ)
9392nnred 12308 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (♯‘𝑋) ∈ ℝ)
9492nngt0d 12342 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 < (♯‘𝑋))
9593, 94elrpd 13096 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (♯‘𝑋) ∈ ℝ+)
9695rpsqrtcld 15460 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
9789, 96rpmulcld 13115 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
9877, 97rpdivcld 13116 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
9998rpred 13099 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
10099adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
10138, 100resubcld 11718 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
102101rexrd 11340 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
103 hoiqssbllem2.l . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
104 iooltub 45428 . . . . . . . . . . . . . . . . 17 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝐶𝑖) < (𝑌𝑖))
105102, 87, 103, 104syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝑌𝑖))
10620, 38, 105ltled 11438 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ≤ (𝑌𝑖))
10738, 100readdcld 11319 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
108107rexrd 11340 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
109 hoiqssbllem2.r . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
110 ioogtlb 45413 . . . . . . . . . . . . . . . 16 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑌𝑖) < (𝐷𝑖))
11187, 108, 109, 110syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) < (𝐷𝑖))
11286, 23, 87, 106, 111elicod 13457 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
11334, 112sylan 579 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
114 icodiamlt 15484 . . . . . . . . . . . . 13 ((((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ) ∧ ((𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)) ∧ (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
11584, 83, 113, 44, 114syl22anc 838 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
116 0red 11293 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 ∈ ℝ)
11720, 38, 22, 106, 111lelttrd 11448 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝐷𝑖))
11820, 22posdifd 11877 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝐶𝑖) < (𝐷𝑖) ↔ 0 < ((𝐷𝑖) − (𝐶𝑖))))
119117, 118mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 < ((𝐷𝑖) − (𝐶𝑖)))
120116, 70, 119ltled 11438 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 0 ≤ ((𝐷𝑖) − (𝐶𝑖)))
12170, 120absidd 15471 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (abs‘((𝐷𝑖) − (𝐶𝑖))) = ((𝐷𝑖) − (𝐶𝑖)))
122121eqcomd 2746 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
123122adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
124115, 123breqtrd 5192 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < (abs‘((𝐷𝑖) − (𝐶𝑖))))
12546, 85, 124abslt2sqd 45275 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12659, 61, 62, 125syl21anc 837 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12758, 81, 63, 82, 126fsumlt 15848 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12834, 57, 127syl2anc 583 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12934, 72syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
13034, 74syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
13150, 67, 129, 130sqrtltd 15476 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ↔ (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))))
132128, 131mpbid 232 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13329, 132eqbrtrd 5188 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13478, 96rerpdivcld 13130 . . . . . . . . . . 11 (𝜑 → (𝐸 / (√‘(♯‘𝑋))) ∈ ℝ)
135134resqcld 14175 . . . . . . . . . 10 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℝ)
136135adantr 480 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℝ)
13722, 20jca 511 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
138107, 101jca 511 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ))
139137, 138jca 511 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)))
140 iooltub 45428 . . . . . . . . . . . . . 14 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
14187, 108, 109, 140syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
142 ioogtlb 45413 . . . . . . . . . . . . . 14 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖))
143102, 87, 103, 142syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖))
144141, 143jca 511 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖)))
145 lt2sub 11788 . . . . . . . . . . . 12 ((((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)) → (((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖)) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))))))
146139, 144, 145sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
14738recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℂ)
148100recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℂ)
149147, 148, 148pnncand 11686 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))) = ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
15078recnd 11318 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
15196rpcnd 13101 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(♯‘𝑋)) ∈ ℂ)
152 2cnd 12371 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
15396rpne0d 13104 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(♯‘𝑋)) ≠ 0)
15489rpne0d 13104 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
155150, 151, 152, 153, 154divdiv3d 45274 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 / (√‘(♯‘𝑋))) / 2) = (𝐸 / (2 · (√‘(♯‘𝑋)))))
156155eqcomd 2746 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) = ((𝐸 / (√‘(♯‘𝑋))) / 2))
157156, 156oveq12d 7466 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = (((𝐸 / (√‘(♯‘𝑋))) / 2) + ((𝐸 / (√‘(♯‘𝑋))) / 2)))
158150, 151, 153divcld 12070 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (√‘(♯‘𝑋))) ∈ ℂ)
1591582halvesd 12539 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸 / (√‘(♯‘𝑋))) / 2) + ((𝐸 / (√‘(♯‘𝑋))) / 2)) = (𝐸 / (√‘(♯‘𝑋))))
160157, 159eqtrd 2780 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = (𝐸 / (√‘(♯‘𝑋))))
161160adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = (𝐸 / (√‘(♯‘𝑋))))
162149, 161eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))) = (𝐸 / (√‘(♯‘𝑋))))
163146, 162breqtrd 5192 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(♯‘𝑋))))
164134adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (√‘(♯‘𝑋))) ∈ ℝ)
165 0red 11293 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
16696rpred 13099 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ)
16777rpgt0d 13102 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
16896rpgt0d 13102 . . . . . . . . . . . . . 14 (𝜑 → 0 < (√‘(♯‘𝑋)))
16978, 166, 167, 168divgt0d 12230 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐸 / (√‘(♯‘𝑋))))
170165, 134, 169ltled 11438 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐸 / (√‘(♯‘𝑋))))
171170adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 0 ≤ (𝐸 / (√‘(♯‘𝑋))))
172 lt2sq 14183 . . . . . . . . . . 11 (((((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ ∧ 0 ≤ ((𝐷𝑖) − (𝐶𝑖))) ∧ ((𝐸 / (√‘(♯‘𝑋))) ∈ ℝ ∧ 0 ≤ (𝐸 / (√‘(♯‘𝑋))))) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(♯‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(♯‘𝑋)))↑2)))
17370, 120, 164, 171, 172syl22anc 838 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(♯‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(♯‘𝑋)))↑2)))
174163, 173mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(♯‘𝑋)))↑2))
1751, 80, 71, 136, 174fsumlt 15848 . . . . . . . 8 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2))
1761, 136fsumrecl 15782 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℝ)
177164sqge0d 14187 . . . . . . . . . 10 ((𝜑𝑖𝑋) → 0 ≤ ((𝐸 / (√‘(♯‘𝑋)))↑2))
1781, 136, 177fsumge0 15843 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2))
17972, 74, 176, 178sqrtltd 15476 . . . . . . . 8 (𝜑 → (Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) ↔ (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2))))
180175, 179mpbid 232 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2)))
181135recnd 11318 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℂ)
182 fsumconst 15838 . . . . . . . . . . 11 ((𝑋 ∈ Fin ∧ ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℂ) → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((♯‘𝑋) · ((𝐸 / (√‘(♯‘𝑋)))↑2)))
1831, 181, 182syl2anc 583 . . . . . . . . . 10 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((♯‘𝑋) · ((𝐸 / (√‘(♯‘𝑋)))↑2)))
184 sqdiv 14171 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (√‘(♯‘𝑋)) ∈ ℂ ∧ (√‘(♯‘𝑋)) ≠ 0) → ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(♯‘𝑋))↑2)))
185150, 151, 153, 184syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(♯‘𝑋))↑2)))
18693recnd 11318 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑋) ∈ ℂ)
187 sqrtth 15413 . . . . . . . . . . . . . 14 ((♯‘𝑋) ∈ ℂ → ((√‘(♯‘𝑋))↑2) = (♯‘𝑋))
188186, 187syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘(♯‘𝑋))↑2) = (♯‘𝑋))
189188oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) / ((√‘(♯‘𝑋))↑2)) = ((𝐸↑2) / (♯‘𝑋)))
190185, 189eqtrd 2780 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((𝐸↑2) / (♯‘𝑋)))
191190oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((♯‘𝑋) · ((𝐸 / (√‘(♯‘𝑋)))↑2)) = ((♯‘𝑋) · ((𝐸↑2) / (♯‘𝑋))))
192150sqcld 14194 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
193165, 94gtned 11425 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ≠ 0)
194192, 186, 193divcan2d 12072 . . . . . . . . . 10 (𝜑 → ((♯‘𝑋) · ((𝐸↑2) / (♯‘𝑋))) = (𝐸↑2))
195183, 191, 1943eqtrd 2784 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) = (𝐸↑2))
196195fveq2d 6924 . . . . . . . 8 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2)) = (√‘(𝐸↑2)))
197165, 78, 167ltled 11438 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
198 sqrtsq 15318 . . . . . . . . 9 ((𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) → (√‘(𝐸↑2)) = 𝐸)
19978, 197, 198syl2anc 583 . . . . . . . 8 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
200 eqidd 2741 . . . . . . . 8 (𝜑𝐸 = 𝐸)
201196, 199, 2003eqtrd 2784 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2)) = 𝐸)
202180, 201breqtrd 5192 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
203202adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
20469, 76, 79, 133, 203lttrd 11451 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸)
205 eqid 2740 . . . . . . . 8 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
206205rrxmetfi 25465 . . . . . . 7 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)))
207 metxmet 24365 . . . . . . 7 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
2081, 206, 2073syl 18 . . . . . 6 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
209208adantr 480 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
21079rexrd 11340 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ*)
21127, 3eleqtrdi 2854 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑m 𝑋))
212 elbl2 24421 . . . . 5 ((((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)) ∧ 𝐸 ∈ ℝ*) ∧ (𝑌 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 ∈ (ℝ ↑m 𝑋))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
213209, 210, 17, 211, 212syl22anc 838 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
214204, 213mpbird 257 . . 3 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
215214ralrimiva 3152 . 2 (𝜑 → ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
216 dfss3 3997 . 2 (X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
217215, 216sylibr 234 1 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Xcixp 8955  Fincfn 9003  cc 11182  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  +crp 13057  (,)cioo 13407  [,)cico 13409  cexp 14112  chash 14379  csqrt 15282  abscabs 15283  Σcsu 15734  distcds 17320  ∞Metcxmet 21372  Metcmet 21373  ballcbl 21374  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438
This theorem is referenced by:  hoiqssbllem3  46545
  Copyright terms: Public domain W3C validator