Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnlem Structured version   Visualization version   GIF version

Theorem ioorrnopnlem 41440
Description: The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnlem.n (𝜑𝑋 ≠ ∅)
ioorrnopnlem.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopnlem.b (𝜑𝐵:𝑋⟶ℝ)
ioorrnopnlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnlem.h 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
ioorrnopnlem.e 𝐸 = inf(𝐻, ℝ, < )
ioorrnopnlem.v 𝑉 = (𝐹(ball‘𝐷)𝐸)
ioorrnopnlem.d 𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
Assertion
Ref Expression
ioorrnopnlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝐴,𝑔   𝑣,𝐴   𝐵,𝑔   𝑣,𝐵   𝐷,𝑔,𝑖   𝑔,𝐸,𝑖   𝑔,𝐹,𝑖   𝑣,𝐹,𝑖   𝑣,𝑉   𝑓,𝑋,𝑔,𝑘   𝑖,𝑋,𝑣   𝜑,𝑓,𝑔,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑓,𝑖,𝑘)   𝐵(𝑓,𝑖,𝑘)   𝐷(𝑣,𝑓,𝑘)   𝐸(𝑣,𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐻(𝑣,𝑓,𝑔,𝑖,𝑘)   𝑉(𝑓,𝑔,𝑖,𝑘)

Proof of Theorem ioorrnopnlem
StepHypRef Expression
1 ioorrnopnlem.x . . . . 5 (𝜑𝑋 ∈ Fin)
2 ioorrnopnlem.d . . . . 5 𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
31, 2rrndsxmet 41439 . . . 4 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
4 nfv 1957 . . . . . 6 𝑖𝜑
5 reex 10363 . . . . . . 7 ℝ ∈ V
65a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
7 ioossre 12547 . . . . . . 7 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ
87a1i 11 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
94, 6, 8ixpssmapc 40166 . . . . 5 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
10 ioorrnopnlem.f . . . . 5 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
119, 10sseldd 3821 . . . 4 (𝜑𝐹 ∈ (ℝ ↑𝑚 𝑋))
12 ioorrnopnlem.e . . . . . 6 𝐸 = inf(𝐻, ℝ, < )
13 ioorrnopnlem.h . . . . . . . . 9 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
1413a1i 11 . . . . . . . 8 (𝜑𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
15 ioorrnopnlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ)
1615ffvelrnda 6623 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
1710adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
18 simpr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝑖𝑋)
19 fvixp2 40303 . . . . . . . . . . . . . . 15 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
2017, 18, 19syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
217, 20sseldi 3818 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
2216, 21resubcld 10803 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ)
23 ioorrnopnlem.a . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝑋⟶ℝ)
2423ffvelrnda 6623 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
2524rexrd 10426 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2616rexrd 10426 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
27 iooltub 40637 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
2825, 26, 20, 27syl3anc 1439 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
2921, 16posdifd 10962 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐹𝑖) < (𝐵𝑖) ↔ 0 < ((𝐵𝑖) − (𝐹𝑖))))
3028, 29mpbid 224 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐵𝑖) − (𝐹𝑖)))
3122, 30elrpd 12178 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ+)
3221, 24resubcld 10803 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ)
33 ioogtlb 40621 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3425, 26, 20, 33syl3anc 1439 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3524, 21posdifd 10962 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐴𝑖) < (𝐹𝑖) ↔ 0 < ((𝐹𝑖) − (𝐴𝑖))))
3634, 35mpbid 224 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐹𝑖) − (𝐴𝑖)))
3732, 36elrpd 12178 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ+)
3831, 37ifcld 4351 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
3938ralrimiva 3147 . . . . . . . . 9 (𝜑 → ∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
40 eqid 2777 . . . . . . . . . 10 (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
4140rnmptss 6656 . . . . . . . . 9 (∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+ → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4239, 41syl 17 . . . . . . . 8 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4314, 42eqsstrd 3857 . . . . . . 7 (𝜑𝐻 ⊆ ℝ+)
44 ltso 10457 . . . . . . . . 9 < Or ℝ
4544a1i 11 . . . . . . . 8 (𝜑 → < Or ℝ)
4640rnmptfi 40267 . . . . . . . . . 10 (𝑋 ∈ Fin → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
471, 46syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
4813, 47syl5eqel 2862 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
4938elexd 3415 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V)
50 ioorrnopnlem.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
514, 49, 40, 50rnmptn0 40326 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ≠ ∅)
5214, 51eqnetrd 3035 . . . . . . . 8 (𝜑𝐻 ≠ ∅)
53 rpssre 12144 . . . . . . . . . 10 + ⊆ ℝ
5453a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℝ)
5543, 54sstrd 3830 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
56 fiinfcl 8695 . . . . . . . 8 (( < Or ℝ ∧ (𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ∧ 𝐻 ⊆ ℝ)) → inf(𝐻, ℝ, < ) ∈ 𝐻)
5745, 48, 52, 55, 56syl13anc 1440 . . . . . . 7 (𝜑 → inf(𝐻, ℝ, < ) ∈ 𝐻)
5843, 57sseldd 3821 . . . . . 6 (𝜑 → inf(𝐻, ℝ, < ) ∈ ℝ+)
5912, 58syl5eqel 2862 . . . . 5 (𝜑𝐸 ∈ ℝ+)
60 rpxr 12148 . . . . 5 (𝐸 ∈ ℝ+𝐸 ∈ ℝ*)
6159, 60syl 17 . . . 4 (𝜑𝐸 ∈ ℝ*)
62 eqid 2777 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
6362blopn 22713 . . . 4 ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝐸 ∈ ℝ*) → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
643, 11, 61, 63syl3anc 1439 . . 3 (𝜑 → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
65 ioorrnopnlem.v . . . . 5 𝑉 = (𝐹(ball‘𝐷)𝐸)
6665a1i 11 . . . 4 (𝜑𝑉 = (𝐹(ball‘𝐷)𝐸))
671rrxtopnfi 41423 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
682eqcomi 2786 . . . . . . 7 (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷
6968a1i 11 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
7069fveq2d 6450 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
7167, 70eqtrd 2813 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘𝐷))
7266, 71eleq12d 2852 . . 3 (𝜑 → (𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷)))
7364, 72mpbird 249 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
74 xmetpsmet 22561 . . . . . 6 (𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) → 𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)))
753, 74syl 17 . . . . 5 (𝜑𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)))
76 blcntrps 22625 . . . . 5 ((𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝐸 ∈ ℝ+) → 𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7775, 11, 59, 76syl3anc 1439 . . . 4 (𝜑𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7866eqcomd 2783 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) = 𝑉)
7977, 78eleqtrd 2860 . . 3 (𝜑𝐹𝑉)
80 nfv 1957 . . . . 5 𝑔𝜑
81 elmapfn 8163 . . . . . . . 8 (𝑔 ∈ (ℝ ↑𝑚 𝑋) → 𝑔 Fn 𝑋)
82813ad2ant2 1125 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔 Fn 𝑋)
83253ad2antl1 1193 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
84263ad2antl1 1193 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
85 simpl2 1201 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑𝑚 𝑋))
86 simpr 479 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑖𝑋)
87 elmapi 8162 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑𝑚 𝑋) → 𝑔:𝑋⟶ℝ)
8887adantr 474 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
89 simpr 479 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
9088, 89ffvelrnd 6624 . . . . . . . . . 10 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
9185, 86, 90syl2anc 579 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
92243ad2antl1 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
9353, 59sseldi 3818 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
9493adantr 474 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ∈ ℝ)
9521, 94resubcld 10803 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
96953ad2antl1 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
9753, 38sseldi 3818 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ)
9812a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = inf(𝐻, ℝ, < ))
99 infxrrefi 40501 . . . . . . . . . . . . . . . . . 18 ((𝐻 ⊆ ℝ ∧ 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅) → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
10055, 48, 52, 99syl3anc 1439 . . . . . . . . . . . . . . . . 17 (𝜑 → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
101100eqcomd 2783 . . . . . . . . . . . . . . . 16 (𝜑 → inf(𝐻, ℝ, < ) = inf(𝐻, ℝ*, < ))
10298, 101eqtrd 2813 . . . . . . . . . . . . . . 15 (𝜑𝐸 = inf(𝐻, ℝ*, < ))
103102adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → 𝐸 = inf(𝐻, ℝ*, < ))
104 ressxr 10420 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
105104a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℝ*)
10655, 105sstrd 3830 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ⊆ ℝ*)
107106adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐻 ⊆ ℝ*)
10840elrnmpt1 5620 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
10918, 49, 108syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
110109, 13syl6eleqr 2869 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻)
111 infxrlb 12476 . . . . . . . . . . . . . . 15 ((𝐻 ⊆ ℝ* ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
112107, 110, 111syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
113103, 112eqbrtrd 4908 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐸 ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
114 min2 12333 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11522, 32, 114syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11694, 97, 32, 113, 115letrd 10533 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐹𝑖) − (𝐴𝑖)))
11794, 21, 24, 116lesubd 10979 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
1181173ad2antl1 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
11921adantlr 705 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12090adantll 704 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
121119, 120resubcld 10803 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1221213adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1231, 2rrndsmet 41438 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
124123ad2antrr 716 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
12511ad2antrr 716 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐹 ∈ (ℝ ↑𝑚 𝑋))
126 simplr 759 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑𝑚 𝑋))
127 metcl 22545 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝑋)) → (𝐹𝐷𝑔) ∈ ℝ)
128124, 125, 126, 127syl3anc 1439 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
1291283adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
13094adantlr 705 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
1311303adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
132121recnd 10405 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℂ)
133132abscld 14583 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ∈ ℝ)
134121leabsd 14561 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
1351ad2antrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑋 ∈ Fin)
136 ixpf 8216 . . . . . . . . . . . . . . . . . . 19 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
13710, 136syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1388ralrimiva 3147 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
139 iunss 4794 . . . . . . . . . . . . . . . . . . 19 ( 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ ↔ ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
140138, 139sylibr 226 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
141137, 140fssd 6305 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℝ)
142141ad2antrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐹:𝑋⟶ℝ)
143126, 87syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
144 simpr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑖𝑋)
145 eqid 2777 . . . . . . . . . . . . . . . 16 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
146135, 142, 143, 144, 145rrnprjdstle 41437 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹(dist‘(ℝ^‘𝑋))𝑔))
147 eqid 2777 . . . . . . . . . . . . . . . . . . . 20 (ℝ^‘𝑋) = (ℝ^‘𝑋)
148 eqid 2777 . . . . . . . . . . . . . . . . . . . 20 (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 𝑋)
149147, 148rrxdsfi 23617 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1501, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151150, 69eqtrd 2813 . . . . . . . . . . . . . . . . 17 (𝜑 → (dist‘(ℝ^‘𝑋)) = 𝐷)
152151oveqd 6939 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
153152ad2antrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
154146, 153breqtrd 4912 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹𝐷𝑔))
155121, 133, 128, 134, 154letrd 10533 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
1561553adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
157 simpl3 1203 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) < 𝐸)
158122, 129, 131, 156, 157lelttrd 10534 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) < 𝐸)
159 ltsub23 10855 . . . . . . . . . . . . 13 (((𝐹𝑖) ∈ ℝ ∧ (𝑔𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
160119, 120, 130, 159syl3anc 1439 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
1611603adantl3 1170 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
162158, 161mpbid 224 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) < (𝑔𝑖))
16392, 96, 91, 118, 162lelttrd 10534 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) < (𝑔𝑖))
16421, 94readdcld 10406 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
1651643ad2antl1 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
166163ad2antl1 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
167120, 119resubcld 10803 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
1681673adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
169167leabsd 14561 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝑔𝑖) − (𝐹𝑖))))
170120recnd 10405 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℂ)
171119recnd 10405 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℂ)
172170, 171abssubd 14600 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝑔𝑖) − (𝐹𝑖))) = (abs‘((𝐹𝑖) − (𝑔𝑖))))
173169, 172breqtrd 4912 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
174167, 133, 128, 173, 154letrd 10533 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
1751743adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
176168, 129, 131, 175, 157lelttrd 10534 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) < 𝐸)
1771193adantl3 1170 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
17891, 177, 131ltsubadd2d 10973 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝑔𝑖) − (𝐹𝑖)) < 𝐸 ↔ (𝑔𝑖) < ((𝐹𝑖) + 𝐸)))
179176, 178mpbid 224 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < ((𝐹𝑖) + 𝐸))
180 min1 12332 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18122, 32, 180syl2anc 579 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18294, 97, 22, 113, 181letrd 10533 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖)))
18321, 94, 16leaddsub2d 10977 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖) ↔ 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖))))
184182, 183mpbird 249 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
1851843ad2antl1 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
18691, 165, 166, 179, 185ltletrd 10536 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < (𝐵𝑖))
18783, 84, 91, 163, 186eliood 40624 . . . . . . . 8 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
188187ralrimiva 3147 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
18982, 188jca 507 . . . . . 6 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
190 vex 3400 . . . . . . 7 𝑔 ∈ V
191190elixp 8201 . . . . . 6 (𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
192189, 191sylibr 226 . . . . 5 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19380, 75, 11, 61, 192ballss3 40193 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19466, 193eqsstrd 3857 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19579, 194jca 507 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
196 eleq2 2847 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
197 sseq1 3844 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
198196, 197anbi12d 624 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
199198rspcev 3510 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
20073, 195, 199syl2anc 579 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wral 3089  wrex 3090  Vcvv 3397  wss 3791  c0 4140  ifcif 4306   ciun 4753   class class class wbr 4886  cmpt 4965   Or wor 5273  ran crn 5356   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  𝑚 cmap 8140  Xcixp 8194  Fincfn 8241  infcinf 8635  cr 10271  0cc0 10272   + caddc 10275  *cxr 10410   < clt 10411  cle 10412  cmin 10606  2c2 11430  +crp 12137  (,)cioo 12487  cexp 13178  csqrt 14380  abscabs 14381  Σcsu 14824  distcds 16347  TopOpenctopn 16468  PsMetcpsmet 20126  ∞Metcxmet 20127  Metcmet 20128  ballcbl 20129  MetOpencmopn 20132  ℝ^crrx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-prds 16494  df-pws 16496  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-rnghom 19104  df-drng 19141  df-field 19142  df-subrg 19170  df-staf 19237  df-srng 19238  df-lmod 19257  df-lss 19325  df-sra 19569  df-rgmod 19570  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-refld 20348  df-dsmm 20475  df-frlm 20490  df-top 21106  df-topon 21123  df-bases 21158  df-nm 22795  df-tng 22797  df-tcph 23376  df-rrx 23591
This theorem is referenced by:  ioorrnopn  41441
  Copyright terms: Public domain W3C validator