Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnlem Structured version   Visualization version   GIF version

Theorem ioorrnopnlem 46309
Description: The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnlem.n (𝜑𝑋 ≠ ∅)
ioorrnopnlem.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopnlem.b (𝜑𝐵:𝑋⟶ℝ)
ioorrnopnlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnlem.h 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
ioorrnopnlem.e 𝐸 = inf(𝐻, ℝ, < )
ioorrnopnlem.v 𝑉 = (𝐹(ball‘𝐷)𝐸)
ioorrnopnlem.d 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
Assertion
Ref Expression
ioorrnopnlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝐴,𝑔   𝑣,𝐴   𝐵,𝑔   𝑣,𝐵   𝐷,𝑔,𝑖   𝑔,𝐸,𝑖   𝑔,𝐹,𝑖   𝑣,𝐹,𝑖   𝑣,𝑉   𝑓,𝑋,𝑔,𝑘   𝑖,𝑋,𝑣   𝜑,𝑓,𝑔,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑓,𝑖,𝑘)   𝐵(𝑓,𝑖,𝑘)   𝐷(𝑣,𝑓,𝑘)   𝐸(𝑣,𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐻(𝑣,𝑓,𝑔,𝑖,𝑘)   𝑉(𝑓,𝑔,𝑖,𝑘)

Proof of Theorem ioorrnopnlem
StepHypRef Expression
1 ioorrnopnlem.x . . . . 5 (𝜑𝑋 ∈ Fin)
2 ioorrnopnlem.d . . . . 5 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
31, 2rrndsxmet 46308 . . . 4 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)))
4 nfv 1914 . . . . . 6 𝑖𝜑
5 reex 11166 . . . . . . 7 ℝ ∈ V
65a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
7 ioossre 13375 . . . . . . 7 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ
87a1i 11 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
94, 6, 8ixpssmapc 45074 . . . . 5 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ (ℝ ↑m 𝑋))
10 ioorrnopnlem.f . . . . 5 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
119, 10sseldd 3950 . . . 4 (𝜑𝐹 ∈ (ℝ ↑m 𝑋))
12 ioorrnopnlem.e . . . . . 6 𝐸 = inf(𝐻, ℝ, < )
13 ioorrnopnlem.h . . . . . . . . 9 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
1413a1i 11 . . . . . . . 8 (𝜑𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
15 ioorrnopnlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ)
1615ffvelcdmda 7059 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
1710adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
18 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝑖𝑋)
19 fvixp2 45200 . . . . . . . . . . . . . . 15 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
2017, 18, 19syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
217, 20sselid 3947 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
2216, 21resubcld 11613 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ)
23 ioorrnopnlem.a . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝑋⟶ℝ)
2423ffvelcdmda 7059 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
2524rexrd 11231 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2616rexrd 11231 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
27 iooltub 45515 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
2825, 26, 20, 27syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
2921, 16posdifd 11772 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐹𝑖) < (𝐵𝑖) ↔ 0 < ((𝐵𝑖) − (𝐹𝑖))))
3028, 29mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐵𝑖) − (𝐹𝑖)))
3122, 30elrpd 12999 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ+)
3221, 24resubcld 11613 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ)
33 ioogtlb 45500 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3425, 26, 20, 33syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3524, 21posdifd 11772 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐴𝑖) < (𝐹𝑖) ↔ 0 < ((𝐹𝑖) − (𝐴𝑖))))
3634, 35mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐹𝑖) − (𝐴𝑖)))
3732, 36elrpd 12999 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ+)
3831, 37ifcld 4538 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
3938ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
40 eqid 2730 . . . . . . . . . 10 (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
4140rnmptss 7098 . . . . . . . . 9 (∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+ → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4239, 41syl 17 . . . . . . . 8 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4314, 42eqsstrd 3984 . . . . . . 7 (𝜑𝐻 ⊆ ℝ+)
44 ltso 11261 . . . . . . . . 9 < Or ℝ
4544a1i 11 . . . . . . . 8 (𝜑 → < Or ℝ)
4640rnmptfi 45172 . . . . . . . . . 10 (𝑋 ∈ Fin → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
471, 46syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
4813, 47eqeltrid 2833 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
49 ioorrnopnlem.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
504, 38, 40, 49rnmptn0 6220 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ≠ ∅)
5114, 50eqnetrd 2993 . . . . . . . 8 (𝜑𝐻 ≠ ∅)
52 rpssre 12966 . . . . . . . . . 10 + ⊆ ℝ
5352a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℝ)
5443, 53sstrd 3960 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
55 fiinfcl 9461 . . . . . . . 8 (( < Or ℝ ∧ (𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ∧ 𝐻 ⊆ ℝ)) → inf(𝐻, ℝ, < ) ∈ 𝐻)
5645, 48, 51, 54, 55syl13anc 1374 . . . . . . 7 (𝜑 → inf(𝐻, ℝ, < ) ∈ 𝐻)
5743, 56sseldd 3950 . . . . . 6 (𝜑 → inf(𝐻, ℝ, < ) ∈ ℝ+)
5812, 57eqeltrid 2833 . . . . 5 (𝜑𝐸 ∈ ℝ+)
59 rpxr 12968 . . . . 5 (𝐸 ∈ ℝ+𝐸 ∈ ℝ*)
6058, 59syl 17 . . . 4 (𝜑𝐸 ∈ ℝ*)
61 eqid 2730 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
6261blopn 24395 . . . 4 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)) ∧ 𝐹 ∈ (ℝ ↑m 𝑋) ∧ 𝐸 ∈ ℝ*) → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
633, 11, 60, 62syl3anc 1373 . . 3 (𝜑 → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
64 ioorrnopnlem.v . . . . 5 𝑉 = (𝐹(ball‘𝐷)𝐸)
6564a1i 11 . . . 4 (𝜑𝑉 = (𝐹(ball‘𝐷)𝐸))
661rrxtopnfi 46292 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
672eqcomi 2739 . . . . . . 7 (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷
6867a1i 11 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
6968fveq2d 6865 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
7066, 69eqtrd 2765 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘𝐷))
7165, 70eleq12d 2823 . . 3 (𝜑 → (𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷)))
7263, 71mpbird 257 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
73 xmetpsmet 24243 . . . . . 6 (𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)) → 𝐷 ∈ (PsMet‘(ℝ ↑m 𝑋)))
743, 73syl 17 . . . . 5 (𝜑𝐷 ∈ (PsMet‘(ℝ ↑m 𝑋)))
75 blcntrps 24307 . . . . 5 ((𝐷 ∈ (PsMet‘(ℝ ↑m 𝑋)) ∧ 𝐹 ∈ (ℝ ↑m 𝑋) ∧ 𝐸 ∈ ℝ+) → 𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7674, 11, 58, 75syl3anc 1373 . . . 4 (𝜑𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7765eqcomd 2736 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) = 𝑉)
7876, 77eleqtrd 2831 . . 3 (𝜑𝐹𝑉)
79 nfv 1914 . . . . 5 𝑔𝜑
80 elmapfn 8841 . . . . . . . 8 (𝑔 ∈ (ℝ ↑m 𝑋) → 𝑔 Fn 𝑋)
81803ad2ant2 1134 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔 Fn 𝑋)
82253ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
83263ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
84 simpl2 1193 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑m 𝑋))
85 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑖𝑋)
86 elmapi 8825 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m 𝑋) → 𝑔:𝑋⟶ℝ)
8786adantr 480 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
88 simpr 484 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
8987, 88ffvelcdmd 7060 . . . . . . . . . 10 ((𝑔 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
9084, 85, 89syl2anc 584 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
91243ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
9252, 58sselid 3947 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
9392adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ∈ ℝ)
9421, 93resubcld 11613 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
95943ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
9652, 38sselid 3947 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ)
9712a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = inf(𝐻, ℝ, < ))
98 infxrrefi 45385 . . . . . . . . . . . . . . . . . 18 ((𝐻 ⊆ ℝ ∧ 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅) → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
9954, 48, 51, 98syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
10099eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑 → inf(𝐻, ℝ, < ) = inf(𝐻, ℝ*, < ))
10197, 100eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑𝐸 = inf(𝐻, ℝ*, < ))
102101adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → 𝐸 = inf(𝐻, ℝ*, < ))
103 ressxr 11225 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
104103a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℝ*)
10554, 104sstrd 3960 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ⊆ ℝ*)
106105adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐻 ⊆ ℝ*)
10738elexd 3474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V)
10840elrnmpt1 5927 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
10918, 107, 108syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
110109, 13eleqtrrdi 2840 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻)
111 infxrlb 13302 . . . . . . . . . . . . . . 15 ((𝐻 ⊆ ℝ* ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
112106, 110, 111syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
113102, 112eqbrtrd 5132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐸 ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
114 min2 13157 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11522, 32, 114syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11693, 96, 32, 113, 115letrd 11338 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐹𝑖) − (𝐴𝑖)))
11793, 21, 24, 116lesubd 11789 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
1181173ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
11921adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12089adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
121119, 120resubcld 11613 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1221213adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1231, 2rrndsmet 46307 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝑋)))
124123ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐷 ∈ (Met‘(ℝ ↑m 𝑋)))
12511ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐹 ∈ (ℝ ↑m 𝑋))
126 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑m 𝑋))
127 metcl 24227 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(ℝ ↑m 𝑋)) ∧ 𝐹 ∈ (ℝ ↑m 𝑋) ∧ 𝑔 ∈ (ℝ ↑m 𝑋)) → (𝐹𝐷𝑔) ∈ ℝ)
128124, 125, 126, 127syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
1291283adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
13093adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
1311303adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
132121recnd 11209 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℂ)
133132abscld 15412 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ∈ ℝ)
134121leabsd 15388 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
1351ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑋 ∈ Fin)
136 ixpf 8896 . . . . . . . . . . . . . . . . . . 19 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
13710, 136syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1388ralrimiva 3126 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
139 iunss 5012 . . . . . . . . . . . . . . . . . . 19 ( 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ ↔ ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
140138, 139sylibr 234 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
141137, 140fssd 6708 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℝ)
142141ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐹:𝑋⟶ℝ)
143126, 86syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
144 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑖𝑋)
145 eqid 2730 . . . . . . . . . . . . . . . 16 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
146135, 142, 143, 144, 145rrnprjdstle 46306 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹(dist‘(ℝ^‘𝑋))𝑔))
147 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (ℝ^‘𝑋) = (ℝ^‘𝑋)
148 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
149147, 148rrxdsfi 25318 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1501, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151150, 68eqtrd 2765 . . . . . . . . . . . . . . . . 17 (𝜑 → (dist‘(ℝ^‘𝑋)) = 𝐷)
152151oveqd 7407 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
153152ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
154146, 153breqtrd 5136 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹𝐷𝑔))
155121, 133, 128, 134, 154letrd 11338 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
1561553adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
157 simpl3 1194 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) < 𝐸)
158122, 129, 131, 156, 157lelttrd 11339 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) < 𝐸)
159 ltsub23 11665 . . . . . . . . . . . . 13 (((𝐹𝑖) ∈ ℝ ∧ (𝑔𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
160119, 120, 130, 159syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
1611603adantl3 1169 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
162158, 161mpbid 232 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) < (𝑔𝑖))
16391, 95, 90, 118, 162lelttrd 11339 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) < (𝑔𝑖))
16421, 93readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
1651643ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
166163ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
167120, 119resubcld 11613 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
1681673adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
169167leabsd 15388 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝑔𝑖) − (𝐹𝑖))))
170120recnd 11209 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℂ)
171119recnd 11209 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℂ)
172170, 171abssubd 15429 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝑔𝑖) − (𝐹𝑖))) = (abs‘((𝐹𝑖) − (𝑔𝑖))))
173169, 172breqtrd 5136 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
174167, 133, 128, 173, 154letrd 11338 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
1751743adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
176168, 129, 131, 175, 157lelttrd 11339 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) < 𝐸)
1771193adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
17890, 177, 131ltsubadd2d 11783 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝑔𝑖) − (𝐹𝑖)) < 𝐸 ↔ (𝑔𝑖) < ((𝐹𝑖) + 𝐸)))
179176, 178mpbid 232 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < ((𝐹𝑖) + 𝐸))
180 min1 13156 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18122, 32, 180syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18293, 96, 22, 113, 181letrd 11338 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖)))
18321, 93, 16leaddsub2d 11787 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖) ↔ 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖))))
184182, 183mpbird 257 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
1851843ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
18690, 165, 166, 179, 185ltletrd 11341 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < (𝐵𝑖))
18782, 83, 90, 163, 186eliood 45503 . . . . . . . 8 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
188187ralrimiva 3126 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
18981, 188jca 511 . . . . . 6 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
190 vex 3454 . . . . . . 7 𝑔 ∈ V
191190elixp 8880 . . . . . 6 (𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
192189, 191sylibr 234 . . . . 5 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19379, 74, 11, 60, 192ballss3 45094 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19465, 193eqsstrd 3984 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19578, 194jca 511 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
196 eleq2 2818 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
197 sseq1 3975 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
198196, 197anbi12d 632 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
199198rspcev 3591 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
20072, 195, 199syl2anc 584 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  ifcif 4491   ciun 4958   class class class wbr 5110  cmpt 5191   Or wor 5548  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Xcixp 8873  Fincfn 8921  infcinf 9399  cr 11074  0cc0 11075   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412  2c2 12248  +crp 12958  (,)cioo 13313  cexp 14033  csqrt 15206  abscabs 15207  Σcsu 15659  distcds 17236  TopOpenctopn 17391  PsMetcpsmet 21255  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  MetOpencmopn 21261  ℝ^crrx 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-top 22788  df-topon 22805  df-bases 22840  df-nm 24477  df-tng 24479  df-tcph 25076  df-rrx 25292
This theorem is referenced by:  ioorrnopn  46310
  Copyright terms: Public domain W3C validator