Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnlem Structured version   Visualization version   GIF version

Theorem ioorrnopnlem 43735
Description: The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnlem.n (𝜑𝑋 ≠ ∅)
ioorrnopnlem.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopnlem.b (𝜑𝐵:𝑋⟶ℝ)
ioorrnopnlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnlem.h 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
ioorrnopnlem.e 𝐸 = inf(𝐻, ℝ, < )
ioorrnopnlem.v 𝑉 = (𝐹(ball‘𝐷)𝐸)
ioorrnopnlem.d 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
Assertion
Ref Expression
ioorrnopnlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝐴,𝑔   𝑣,𝐴   𝐵,𝑔   𝑣,𝐵   𝐷,𝑔,𝑖   𝑔,𝐸,𝑖   𝑔,𝐹,𝑖   𝑣,𝐹,𝑖   𝑣,𝑉   𝑓,𝑋,𝑔,𝑘   𝑖,𝑋,𝑣   𝜑,𝑓,𝑔,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑓,𝑖,𝑘)   𝐵(𝑓,𝑖,𝑘)   𝐷(𝑣,𝑓,𝑘)   𝐸(𝑣,𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐻(𝑣,𝑓,𝑔,𝑖,𝑘)   𝑉(𝑓,𝑔,𝑖,𝑘)

Proof of Theorem ioorrnopnlem
StepHypRef Expression
1 ioorrnopnlem.x . . . . 5 (𝜑𝑋 ∈ Fin)
2 ioorrnopnlem.d . . . . 5 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
31, 2rrndsxmet 43734 . . . 4 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)))
4 nfv 1918 . . . . . 6 𝑖𝜑
5 reex 10893 . . . . . . 7 ℝ ∈ V
65a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
7 ioossre 13069 . . . . . . 7 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ
87a1i 11 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
94, 6, 8ixpssmapc 42511 . . . . 5 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ (ℝ ↑m 𝑋))
10 ioorrnopnlem.f . . . . 5 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
119, 10sseldd 3918 . . . 4 (𝜑𝐹 ∈ (ℝ ↑m 𝑋))
12 ioorrnopnlem.e . . . . . 6 𝐸 = inf(𝐻, ℝ, < )
13 ioorrnopnlem.h . . . . . . . . 9 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
1413a1i 11 . . . . . . . 8 (𝜑𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
15 ioorrnopnlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ)
1615ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
1710adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
18 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝑖𝑋)
19 fvixp2 42627 . . . . . . . . . . . . . . 15 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
2017, 18, 19syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
217, 20sselid 3915 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
2216, 21resubcld 11333 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ)
23 ioorrnopnlem.a . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝑋⟶ℝ)
2423ffvelrnda 6943 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
2524rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2616rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
27 iooltub 42938 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
2825, 26, 20, 27syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
2921, 16posdifd 11492 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐹𝑖) < (𝐵𝑖) ↔ 0 < ((𝐵𝑖) − (𝐹𝑖))))
3028, 29mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐵𝑖) − (𝐹𝑖)))
3122, 30elrpd 12698 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ+)
3221, 24resubcld 11333 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ)
33 ioogtlb 42923 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3425, 26, 20, 33syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3524, 21posdifd 11492 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐴𝑖) < (𝐹𝑖) ↔ 0 < ((𝐹𝑖) − (𝐴𝑖))))
3634, 35mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐹𝑖) − (𝐴𝑖)))
3732, 36elrpd 12698 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ+)
3831, 37ifcld 4502 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
3938ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
40 eqid 2738 . . . . . . . . . 10 (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
4140rnmptss 6978 . . . . . . . . 9 (∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+ → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4239, 41syl 17 . . . . . . . 8 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4314, 42eqsstrd 3955 . . . . . . 7 (𝜑𝐻 ⊆ ℝ+)
44 ltso 10986 . . . . . . . . 9 < Or ℝ
4544a1i 11 . . . . . . . 8 (𝜑 → < Or ℝ)
4640rnmptfi 42596 . . . . . . . . . 10 (𝑋 ∈ Fin → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
471, 46syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
4813, 47eqeltrid 2843 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
49 ioorrnopnlem.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
504, 38, 40, 49rnmptn0 6136 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ≠ ∅)
5114, 50eqnetrd 3010 . . . . . . . 8 (𝜑𝐻 ≠ ∅)
52 rpssre 12666 . . . . . . . . . 10 + ⊆ ℝ
5352a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℝ)
5443, 53sstrd 3927 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
55 fiinfcl 9190 . . . . . . . 8 (( < Or ℝ ∧ (𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ∧ 𝐻 ⊆ ℝ)) → inf(𝐻, ℝ, < ) ∈ 𝐻)
5645, 48, 51, 54, 55syl13anc 1370 . . . . . . 7 (𝜑 → inf(𝐻, ℝ, < ) ∈ 𝐻)
5743, 56sseldd 3918 . . . . . 6 (𝜑 → inf(𝐻, ℝ, < ) ∈ ℝ+)
5812, 57eqeltrid 2843 . . . . 5 (𝜑𝐸 ∈ ℝ+)
59 rpxr 12668 . . . . 5 (𝐸 ∈ ℝ+𝐸 ∈ ℝ*)
6058, 59syl 17 . . . 4 (𝜑𝐸 ∈ ℝ*)
61 eqid 2738 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
6261blopn 23562 . . . 4 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)) ∧ 𝐹 ∈ (ℝ ↑m 𝑋) ∧ 𝐸 ∈ ℝ*) → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
633, 11, 60, 62syl3anc 1369 . . 3 (𝜑 → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
64 ioorrnopnlem.v . . . . 5 𝑉 = (𝐹(ball‘𝐷)𝐸)
6564a1i 11 . . . 4 (𝜑𝑉 = (𝐹(ball‘𝐷)𝐸))
661rrxtopnfi 43718 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
672eqcomi 2747 . . . . . . 7 (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷
6867a1i 11 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
6968fveq2d 6760 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
7066, 69eqtrd 2778 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘𝐷))
7165, 70eleq12d 2833 . . 3 (𝜑 → (𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷)))
7263, 71mpbird 256 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
73 xmetpsmet 23409 . . . . . 6 (𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)) → 𝐷 ∈ (PsMet‘(ℝ ↑m 𝑋)))
743, 73syl 17 . . . . 5 (𝜑𝐷 ∈ (PsMet‘(ℝ ↑m 𝑋)))
75 blcntrps 23473 . . . . 5 ((𝐷 ∈ (PsMet‘(ℝ ↑m 𝑋)) ∧ 𝐹 ∈ (ℝ ↑m 𝑋) ∧ 𝐸 ∈ ℝ+) → 𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7674, 11, 58, 75syl3anc 1369 . . . 4 (𝜑𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7765eqcomd 2744 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) = 𝑉)
7876, 77eleqtrd 2841 . . 3 (𝜑𝐹𝑉)
79 nfv 1918 . . . . 5 𝑔𝜑
80 elmapfn 8611 . . . . . . . 8 (𝑔 ∈ (ℝ ↑m 𝑋) → 𝑔 Fn 𝑋)
81803ad2ant2 1132 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔 Fn 𝑋)
82253ad2antl1 1183 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
83263ad2antl1 1183 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
84 simpl2 1190 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑m 𝑋))
85 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑖𝑋)
86 elmapi 8595 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m 𝑋) → 𝑔:𝑋⟶ℝ)
8786adantr 480 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
88 simpr 484 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
8987, 88ffvelrnd 6944 . . . . . . . . . 10 ((𝑔 ∈ (ℝ ↑m 𝑋) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
9084, 85, 89syl2anc 583 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
91243ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
9252, 58sselid 3915 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
9392adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ∈ ℝ)
9421, 93resubcld 11333 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
95943ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
9652, 38sselid 3915 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ)
9712a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = inf(𝐻, ℝ, < ))
98 infxrrefi 42811 . . . . . . . . . . . . . . . . . 18 ((𝐻 ⊆ ℝ ∧ 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅) → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
9954, 48, 51, 98syl3anc 1369 . . . . . . . . . . . . . . . . 17 (𝜑 → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
10099eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑 → inf(𝐻, ℝ, < ) = inf(𝐻, ℝ*, < ))
10197, 100eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑𝐸 = inf(𝐻, ℝ*, < ))
102101adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → 𝐸 = inf(𝐻, ℝ*, < ))
103 ressxr 10950 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
104103a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℝ*)
10554, 104sstrd 3927 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ⊆ ℝ*)
106105adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐻 ⊆ ℝ*)
10738elexd 3442 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V)
10840elrnmpt1 5856 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
10918, 107, 108syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
110109, 13eleqtrrdi 2850 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻)
111 infxrlb 12997 . . . . . . . . . . . . . . 15 ((𝐻 ⊆ ℝ* ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
112106, 110, 111syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
113102, 112eqbrtrd 5092 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐸 ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
114 min2 12853 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11522, 32, 114syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11693, 96, 32, 113, 115letrd 11062 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐹𝑖) − (𝐴𝑖)))
11793, 21, 24, 116lesubd 11509 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
1181173ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
11921adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12089adantll 710 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
121119, 120resubcld 11333 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1221213adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1231, 2rrndsmet 43733 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝑋)))
124123ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐷 ∈ (Met‘(ℝ ↑m 𝑋)))
12511ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐹 ∈ (ℝ ↑m 𝑋))
126 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑m 𝑋))
127 metcl 23393 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(ℝ ↑m 𝑋)) ∧ 𝐹 ∈ (ℝ ↑m 𝑋) ∧ 𝑔 ∈ (ℝ ↑m 𝑋)) → (𝐹𝐷𝑔) ∈ ℝ)
128124, 125, 126, 127syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
1291283adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
13093adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
1311303adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
132121recnd 10934 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℂ)
133132abscld 15076 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ∈ ℝ)
134121leabsd 15054 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
1351ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑋 ∈ Fin)
136 ixpf 8666 . . . . . . . . . . . . . . . . . . 19 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
13710, 136syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1388ralrimiva 3107 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
139 iunss 4971 . . . . . . . . . . . . . . . . . . 19 ( 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ ↔ ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
140138, 139sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
141137, 140fssd 6602 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℝ)
142141ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝐹:𝑋⟶ℝ)
143126, 86syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
144 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → 𝑖𝑋)
145 eqid 2738 . . . . . . . . . . . . . . . 16 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
146135, 142, 143, 144, 145rrnprjdstle 43732 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹(dist‘(ℝ^‘𝑋))𝑔))
147 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (ℝ^‘𝑋) = (ℝ^‘𝑋)
148 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
149147, 148rrxdsfi 24480 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1501, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151150, 68eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → (dist‘(ℝ^‘𝑋)) = 𝐷)
152151oveqd 7272 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
153152ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
154146, 153breqtrd 5096 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹𝐷𝑔))
155121, 133, 128, 134, 154letrd 11062 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
1561553adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
157 simpl3 1191 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) < 𝐸)
158122, 129, 131, 156, 157lelttrd 11063 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) < 𝐸)
159 ltsub23 11385 . . . . . . . . . . . . 13 (((𝐹𝑖) ∈ ℝ ∧ (𝑔𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
160119, 120, 130, 159syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
1611603adantl3 1166 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
162158, 161mpbid 231 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) < (𝑔𝑖))
16391, 95, 90, 118, 162lelttrd 11063 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) < (𝑔𝑖))
16421, 93readdcld 10935 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
1651643ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
166163ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
167120, 119resubcld 11333 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
1681673adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
169167leabsd 15054 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝑔𝑖) − (𝐹𝑖))))
170120recnd 10934 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℂ)
171119recnd 10934 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℂ)
172170, 171abssubd 15093 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝑔𝑖) − (𝐹𝑖))) = (abs‘((𝐹𝑖) − (𝑔𝑖))))
173169, 172breqtrd 5096 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
174167, 133, 128, 173, 154letrd 11062 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
1751743adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
176168, 129, 131, 175, 157lelttrd 11063 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) < 𝐸)
1771193adantl3 1166 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
17890, 177, 131ltsubadd2d 11503 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝑔𝑖) − (𝐹𝑖)) < 𝐸 ↔ (𝑔𝑖) < ((𝐹𝑖) + 𝐸)))
179176, 178mpbid 231 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < ((𝐹𝑖) + 𝐸))
180 min1 12852 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18122, 32, 180syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18293, 96, 22, 113, 181letrd 11062 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖)))
18321, 93, 16leaddsub2d 11507 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖) ↔ 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖))))
184182, 183mpbird 256 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
1851843ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
18690, 165, 166, 179, 185ltletrd 11065 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < (𝐵𝑖))
18782, 83, 90, 163, 186eliood 42926 . . . . . . . 8 (((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
188187ralrimiva 3107 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
18981, 188jca 511 . . . . . 6 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
190 vex 3426 . . . . . . 7 𝑔 ∈ V
191190elixp 8650 . . . . . 6 (𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
192189, 191sylibr 233 . . . . 5 ((𝜑𝑔 ∈ (ℝ ↑m 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19379, 74, 11, 60, 192ballss3 42532 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19465, 193eqsstrd 3955 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19578, 194jca 511 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
196 eleq2 2827 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
197 sseq1 3942 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
198196, 197anbi12d 630 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
199198rspcev 3552 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
20072, 195, 199syl2anc 583 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253  ifcif 4456   ciun 4921   class class class wbr 5070  cmpt 5153   Or wor 5493  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Xcixp 8643  Fincfn 8691  infcinf 9130  cr 10801  0cc0 10802   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  2c2 11958  +crp 12659  (,)cioo 13008  cexp 13710  csqrt 14872  abscabs 14873  Σcsu 15325  distcds 16897  TopOpenctopn 17049  PsMetcpsmet 20494  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500  ℝ^crrx 24452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-top 21951  df-topon 21968  df-bases 22004  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454
This theorem is referenced by:  ioorrnopn  43736
  Copyright terms: Public domain W3C validator