Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioolem Structured version   Visualization version   GIF version

Theorem iunhoiioolem 44103
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioolem.K 𝑘𝜑
iunhoiioolem.x (𝜑𝑋 ∈ Fin)
iunhoiioolem.n (𝜑𝑋 ≠ ∅)
iunhoiioolem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioolem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
iunhoiioolem.f (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
iunhoiioolem.c 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
Assertion
Ref Expression
iunhoiioolem (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Distinct variable groups:   𝐶,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑘)   𝑋(𝑛)

Proof of Theorem iunhoiioolem
StepHypRef Expression
1 iunhoiioolem.K . . . . . 6 𝑘𝜑
2 eqid 2738 . . . . . 6 (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) = (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
3 iunhoiioolem.f . . . . . . . . . . 11 (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
4 ixpf 8666 . . . . . . . . . . 11 (𝐹X𝑘𝑋 (𝐴(,)𝐵) → 𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
6 ioossre 13069 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
76rgenw 3075 . . . . . . . . . . . 12 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ
87a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
9 iunss 4971 . . . . . . . . . . 11 ( 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
108, 9sylibr 233 . . . . . . . . . 10 (𝜑 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
115, 10fssd 6602 . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
1211ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
13 iunhoiioolem.a . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1412, 13resubcld 11333 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
1513rexrd 10956 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
16 iunhoiioolem.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
173adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴(,)𝐵))
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
19 fvixp2 42627 . . . . . . . . . 10 ((𝐹X𝑘𝑋 (𝐴(,)𝐵) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
2017, 18, 19syl2anc 583 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
21 ioogtlb 42923 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → 𝐴 < (𝐹𝑘))
2215, 16, 20, 21syl3anc 1369 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 < (𝐹𝑘))
2313, 12posdifd 11492 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴 < (𝐹𝑘) ↔ 0 < ((𝐹𝑘) − 𝐴)))
2422, 23mpbid 231 . . . . . . 7 ((𝜑𝑘𝑋) → 0 < ((𝐹𝑘) − 𝐴))
2514, 24elrpd 12698 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ+)
261, 2, 25rnmptssd 42624 . . . . 5 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ+)
27 iunhoiioolem.c . . . . . 6 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
28 ltso 10986 . . . . . . . 8 < Or ℝ
2928a1i 11 . . . . . . 7 (𝜑 → < Or ℝ)
30 iunhoiioolem.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
312rnmptfi 42596 . . . . . . . 8 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
3230, 31syl 17 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
33 iunhoiioolem.n . . . . . . . 8 (𝜑𝑋 ≠ ∅)
341, 14, 2, 33rnmptn0 6136 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅)
351, 2, 14rnmptssd 42624 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
36 fiinfcl 9190 . . . . . . 7 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3729, 32, 34, 35, 36syl13anc 1370 . . . . . 6 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3827, 37eqeltrid 2843 . . . . 5 (𝜑𝐶 ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3926, 38sseldd 3918 . . . 4 (𝜑𝐶 ∈ ℝ+)
40 rpgtrecnn 42809 . . . 4 (𝐶 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
4139, 40syl 17 . . 3 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
423elexd 3442 . . . . . . . 8 (𝜑𝐹 ∈ V)
4342ad2antrr 722 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 ∈ V)
445ffnd 6585 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
4544ad2antrr 722 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 Fn 𝑋)
46 nfv 1918 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
471, 46nfan 1903 . . . . . . . . 9 𝑘(𝜑𝑛 ∈ ℕ)
48 nfcv 2906 . . . . . . . . . 10 𝑘(1 / 𝑛)
49 nfcv 2906 . . . . . . . . . 10 𝑘 <
50 nfmpt1 5178 . . . . . . . . . . . . 13 𝑘(𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
5150nfrn 5850 . . . . . . . . . . . 12 𝑘ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
52 nfcv 2906 . . . . . . . . . . . 12 𝑘
5351, 52, 49nfinf 9171 . . . . . . . . . . 11 𝑘inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
5427, 53nfcxfr 2904 . . . . . . . . . 10 𝑘𝐶
5548, 49, 54nfbr 5117 . . . . . . . . 9 𝑘(1 / 𝑛) < 𝐶
5647, 55nfan 1903 . . . . . . . 8 𝑘((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶)
5713adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
58 nnrecre 11945 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5958ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
6057, 59readdcld 10935 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
6160rexrd 10956 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6261adantlr 711 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6316adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
6463adantlr 711 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
65 ressxr 10950 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
6665a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6711, 66fssd 6602 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℝ*)
6867ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹:𝑋⟶ℝ*)
6968ffvelrnda 6943 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7060adantlr 711 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
7112ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
7259adantlr 711 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
7335, 38sseldd 3918 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
7473ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ∈ ℝ)
7514ad4ant14 748 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
76 simplr 765 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < 𝐶)
7735ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
7832ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
79 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋𝑘𝑋)
80 ovexd 7290 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ V)
812elrnmpt1 5856 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑋 ∧ ((𝐹𝑘) − 𝐴) ∈ V) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8279, 80, 81syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8382adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
84 infrefilb 11891 . . . . . . . . . . . . . . . 16 ((ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8577, 78, 83, 84syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8627, 85eqbrtrid 5105 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8786adantlr 711 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8872, 74, 75, 76, 87ltletrd 11065 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐹𝑘) − 𝐴))
8957adantlr 711 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
9089, 72, 71ltaddsub2d 11506 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛)) < (𝐹𝑘) ↔ (1 / 𝑛) < ((𝐹𝑘) − 𝐴)))
9188, 90mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) < (𝐹𝑘))
9270, 71, 91ltled 11053 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ≤ (𝐹𝑘))
93 iooltub 42938 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → (𝐹𝑘) < 𝐵)
9415, 16, 20, 93syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐹𝑘) < 𝐵)
9594ad4ant14 748 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) < 𝐵)
9662, 64, 69, 92, 95elicod 13058 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9796ex 412 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝑘𝑋 → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
9856, 97ralrimi 3139 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9943, 45, 983jca 1126 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
100 elixp2 8647 . . . . . 6 (𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
10199, 100sylibr 233 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
102101ex 412 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝐶𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
103102reximdva 3202 . . 3 (𝜑 → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
10441, 103mpd 15 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
105 eliun 4925 . 2 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
106104, 105sylibr 233 1 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253   ciun 4921   class class class wbr 5070  cmpt 5153   Or wor 5493  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Xcixp 8643  Fincfn 8691  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  +crp 12659  (,)cioo 13008  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440
This theorem is referenced by:  iunhoiioo  44104
  Copyright terms: Public domain W3C validator