Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioolem Structured version   Visualization version   GIF version

Theorem iunhoiioolem 46596
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioolem.K 𝑘𝜑
iunhoiioolem.x (𝜑𝑋 ∈ Fin)
iunhoiioolem.n (𝜑𝑋 ≠ ∅)
iunhoiioolem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioolem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
iunhoiioolem.f (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
iunhoiioolem.c 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
Assertion
Ref Expression
iunhoiioolem (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Distinct variable groups:   𝐶,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑘)   𝑋(𝑛)

Proof of Theorem iunhoiioolem
StepHypRef Expression
1 iunhoiioolem.K . . . . . 6 𝑘𝜑
2 eqid 2740 . . . . . 6 (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) = (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
3 iunhoiioolem.f . . . . . . . . . . 11 (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
4 ixpf 8978 . . . . . . . . . . 11 (𝐹X𝑘𝑋 (𝐴(,)𝐵) → 𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
6 ioossre 13468 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
76rgenw 3071 . . . . . . . . . . . 12 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ
87a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
9 iunss 5068 . . . . . . . . . . 11 ( 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
108, 9sylibr 234 . . . . . . . . . 10 (𝜑 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
115, 10fssd 6764 . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
1211ffvelcdmda 7118 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
13 iunhoiioolem.a . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1412, 13resubcld 11718 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
1513rexrd 11340 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
16 iunhoiioolem.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
173adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴(,)𝐵))
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
19 fvixp2 45106 . . . . . . . . . 10 ((𝐹X𝑘𝑋 (𝐴(,)𝐵) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
2017, 18, 19syl2anc 583 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
21 ioogtlb 45413 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → 𝐴 < (𝐹𝑘))
2215, 16, 20, 21syl3anc 1371 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 < (𝐹𝑘))
2313, 12posdifd 11877 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴 < (𝐹𝑘) ↔ 0 < ((𝐹𝑘) − 𝐴)))
2422, 23mpbid 232 . . . . . . 7 ((𝜑𝑘𝑋) → 0 < ((𝐹𝑘) − 𝐴))
2514, 24elrpd 13096 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ+)
261, 2, 25rnmptssd 45103 . . . . 5 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ+)
27 iunhoiioolem.c . . . . . 6 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
28 ltso 11370 . . . . . . . 8 < Or ℝ
2928a1i 11 . . . . . . 7 (𝜑 → < Or ℝ)
30 iunhoiioolem.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
312rnmptfi 45078 . . . . . . . 8 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
3230, 31syl 17 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
33 iunhoiioolem.n . . . . . . . 8 (𝜑𝑋 ≠ ∅)
341, 14, 2, 33rnmptn0 6275 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅)
351, 2, 14rnmptssd 45103 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
36 fiinfcl 9570 . . . . . . 7 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3729, 32, 34, 35, 36syl13anc 1372 . . . . . 6 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3827, 37eqeltrid 2848 . . . . 5 (𝜑𝐶 ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3926, 38sseldd 4009 . . . 4 (𝜑𝐶 ∈ ℝ+)
40 rpgtrecnn 45295 . . . 4 (𝐶 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
4139, 40syl 17 . . 3 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
423elexd 3512 . . . . . . . 8 (𝜑𝐹 ∈ V)
4342ad2antrr 725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 ∈ V)
445ffnd 6748 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
4544ad2antrr 725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 Fn 𝑋)
46 nfv 1913 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
471, 46nfan 1898 . . . . . . . . 9 𝑘(𝜑𝑛 ∈ ℕ)
48 nfcv 2908 . . . . . . . . . 10 𝑘(1 / 𝑛)
49 nfcv 2908 . . . . . . . . . 10 𝑘 <
50 nfmpt1 5274 . . . . . . . . . . . . 13 𝑘(𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
5150nfrn 5977 . . . . . . . . . . . 12 𝑘ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
52 nfcv 2908 . . . . . . . . . . . 12 𝑘
5351, 52, 49nfinf 9551 . . . . . . . . . . 11 𝑘inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
5427, 53nfcxfr 2906 . . . . . . . . . 10 𝑘𝐶
5548, 49, 54nfbr 5213 . . . . . . . . 9 𝑘(1 / 𝑛) < 𝐶
5647, 55nfan 1898 . . . . . . . 8 𝑘((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶)
5713adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
58 nnrecre 12335 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5958ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
6057, 59readdcld 11319 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
6160rexrd 11340 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6261adantlr 714 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6316adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
6463adantlr 714 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
65 ressxr 11334 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
6665a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6711, 66fssd 6764 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℝ*)
6867ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹:𝑋⟶ℝ*)
6968ffvelcdmda 7118 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7060adantlr 714 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
7112ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
7259adantlr 714 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
7335, 38sseldd 4009 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
7473ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ∈ ℝ)
7514ad4ant14 751 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
76 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < 𝐶)
7735ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
7832ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
79 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋𝑘𝑋)
80 ovexd 7483 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ V)
812elrnmpt1 5983 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑋 ∧ ((𝐹𝑘) − 𝐴) ∈ V) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8279, 80, 81syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8382adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
84 infrefilb 12281 . . . . . . . . . . . . . . . 16 ((ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8577, 78, 83, 84syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8627, 85eqbrtrid 5201 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8786adantlr 714 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8872, 74, 75, 76, 87ltletrd 11450 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐹𝑘) − 𝐴))
8957adantlr 714 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
9089, 72, 71ltaddsub2d 11891 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛)) < (𝐹𝑘) ↔ (1 / 𝑛) < ((𝐹𝑘) − 𝐴)))
9188, 90mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) < (𝐹𝑘))
9270, 71, 91ltled 11438 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ≤ (𝐹𝑘))
93 iooltub 45428 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → (𝐹𝑘) < 𝐵)
9415, 16, 20, 93syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐹𝑘) < 𝐵)
9594ad4ant14 751 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) < 𝐵)
9662, 64, 69, 92, 95elicod 13457 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9796ex 412 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝑘𝑋 → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
9856, 97ralrimi 3263 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9943, 45, 983jca 1128 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
100 elixp2 8959 . . . . . 6 (𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
10199, 100sylibr 234 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
102101ex 412 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝐶𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
103102reximdva 3174 . . 3 (𝜑 → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
10441, 103mpd 15 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
105 eliun 5019 . 2 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
106104, 105sylibr 234 1 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352   ciun 5015   class class class wbr 5166  cmpt 5249   Or wor 5606  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Xcixp 8955  Fincfn 9003  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  +crp 13057  (,)cioo 13407  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-ico 13413  df-fl 13843
This theorem is referenced by:  iunhoiioo  46597
  Copyright terms: Public domain W3C validator