Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioolem Structured version   Visualization version   GIF version

Theorem iunhoiioolem 46296
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioolem.K 𝑘𝜑
iunhoiioolem.x (𝜑𝑋 ∈ Fin)
iunhoiioolem.n (𝜑𝑋 ≠ ∅)
iunhoiioolem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioolem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
iunhoiioolem.f (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
iunhoiioolem.c 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
Assertion
Ref Expression
iunhoiioolem (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Distinct variable groups:   𝐶,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑘)   𝑋(𝑛)

Proof of Theorem iunhoiioolem
StepHypRef Expression
1 iunhoiioolem.K . . . . . 6 𝑘𝜑
2 eqid 2726 . . . . . 6 (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) = (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
3 iunhoiioolem.f . . . . . . . . . . 11 (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
4 ixpf 8949 . . . . . . . . . . 11 (𝐹X𝑘𝑋 (𝐴(,)𝐵) → 𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
6 ioossre 13439 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
76rgenw 3055 . . . . . . . . . . . 12 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ
87a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
9 iunss 5053 . . . . . . . . . . 11 ( 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
108, 9sylibr 233 . . . . . . . . . 10 (𝜑 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
115, 10fssd 6745 . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
1211ffvelcdmda 7098 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
13 iunhoiioolem.a . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1412, 13resubcld 11692 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
1513rexrd 11314 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
16 iunhoiioolem.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
173adantr 479 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴(,)𝐵))
18 simpr 483 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
19 fvixp2 44806 . . . . . . . . . 10 ((𝐹X𝑘𝑋 (𝐴(,)𝐵) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
2017, 18, 19syl2anc 582 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
21 ioogtlb 45113 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → 𝐴 < (𝐹𝑘))
2215, 16, 20, 21syl3anc 1368 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 < (𝐹𝑘))
2313, 12posdifd 11851 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴 < (𝐹𝑘) ↔ 0 < ((𝐹𝑘) − 𝐴)))
2422, 23mpbid 231 . . . . . . 7 ((𝜑𝑘𝑋) → 0 < ((𝐹𝑘) − 𝐴))
2514, 24elrpd 13067 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ+)
261, 2, 25rnmptssd 44803 . . . . 5 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ+)
27 iunhoiioolem.c . . . . . 6 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
28 ltso 11344 . . . . . . . 8 < Or ℝ
2928a1i 11 . . . . . . 7 (𝜑 → < Or ℝ)
30 iunhoiioolem.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
312rnmptfi 44778 . . . . . . . 8 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
3230, 31syl 17 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
33 iunhoiioolem.n . . . . . . . 8 (𝜑𝑋 ≠ ∅)
341, 14, 2, 33rnmptn0 6255 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅)
351, 2, 14rnmptssd 44803 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
36 fiinfcl 9544 . . . . . . 7 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3729, 32, 34, 35, 36syl13anc 1369 . . . . . 6 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3827, 37eqeltrid 2830 . . . . 5 (𝜑𝐶 ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3926, 38sseldd 3980 . . . 4 (𝜑𝐶 ∈ ℝ+)
40 rpgtrecnn 44995 . . . 4 (𝐶 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
4139, 40syl 17 . . 3 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
423elexd 3485 . . . . . . . 8 (𝜑𝐹 ∈ V)
4342ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 ∈ V)
445ffnd 6729 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
4544ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 Fn 𝑋)
46 nfv 1910 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
471, 46nfan 1895 . . . . . . . . 9 𝑘(𝜑𝑛 ∈ ℕ)
48 nfcv 2892 . . . . . . . . . 10 𝑘(1 / 𝑛)
49 nfcv 2892 . . . . . . . . . 10 𝑘 <
50 nfmpt1 5261 . . . . . . . . . . . . 13 𝑘(𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
5150nfrn 5958 . . . . . . . . . . . 12 𝑘ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
52 nfcv 2892 . . . . . . . . . . . 12 𝑘
5351, 52, 49nfinf 9525 . . . . . . . . . . 11 𝑘inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
5427, 53nfcxfr 2890 . . . . . . . . . 10 𝑘𝐶
5548, 49, 54nfbr 5200 . . . . . . . . 9 𝑘(1 / 𝑛) < 𝐶
5647, 55nfan 1895 . . . . . . . 8 𝑘((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶)
5713adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
58 nnrecre 12306 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5958ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
6057, 59readdcld 11293 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
6160rexrd 11314 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6261adantlr 713 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6316adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
6463adantlr 713 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
65 ressxr 11308 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
6665a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6711, 66fssd 6745 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℝ*)
6867ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹:𝑋⟶ℝ*)
6968ffvelcdmda 7098 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7060adantlr 713 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
7112ad4ant14 750 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
7259adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
7335, 38sseldd 3980 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
7473ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ∈ ℝ)
7514ad4ant14 750 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
76 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < 𝐶)
7735ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
7832ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
79 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋𝑘𝑋)
80 ovexd 7459 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ V)
812elrnmpt1 5964 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑋 ∧ ((𝐹𝑘) − 𝐴) ∈ V) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8279, 80, 81syl2anc 582 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8382adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
84 infrefilb 12252 . . . . . . . . . . . . . . . 16 ((ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8577, 78, 83, 84syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8627, 85eqbrtrid 5188 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8786adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8872, 74, 75, 76, 87ltletrd 11424 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐹𝑘) − 𝐴))
8957adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
9089, 72, 71ltaddsub2d 11865 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛)) < (𝐹𝑘) ↔ (1 / 𝑛) < ((𝐹𝑘) − 𝐴)))
9188, 90mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) < (𝐹𝑘))
9270, 71, 91ltled 11412 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ≤ (𝐹𝑘))
93 iooltub 45128 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → (𝐹𝑘) < 𝐵)
9415, 16, 20, 93syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐹𝑘) < 𝐵)
9594ad4ant14 750 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) < 𝐵)
9662, 64, 69, 92, 95elicod 13428 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9796ex 411 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝑘𝑋 → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
9856, 97ralrimi 3245 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9943, 45, 983jca 1125 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
100 elixp2 8930 . . . . . 6 (𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
10199, 100sylibr 233 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
102101ex 411 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝐶𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
103102reximdva 3158 . . 3 (𝜑 → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
10441, 103mpd 15 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
105 eliun 5005 . 2 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
106104, 105sylibr 233 1 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wnf 1778  wcel 2099  wne 2930  wral 3051  wrex 3060  Vcvv 3462  wss 3947  c0 4325   ciun 5001   class class class wbr 5153  cmpt 5236   Or wor 5593  ran crn 5683   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  Xcixp 8926  Fincfn 8974  infcinf 9484  cr 11157  0cc0 11158  1c1 11159   + caddc 11161  *cxr 11297   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  +crp 13028  (,)cioo 13378  [,)cico 13380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ioo 13382  df-ico 13384  df-fl 13812
This theorem is referenced by:  iunhoiioo  46297
  Copyright terms: Public domain W3C validator