Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioolem Structured version   Visualization version   GIF version

Theorem iunhoiioolem 46676
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioolem.K 𝑘𝜑
iunhoiioolem.x (𝜑𝑋 ∈ Fin)
iunhoiioolem.n (𝜑𝑋 ≠ ∅)
iunhoiioolem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioolem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
iunhoiioolem.f (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
iunhoiioolem.c 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
Assertion
Ref Expression
iunhoiioolem (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Distinct variable groups:   𝐶,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑘)   𝑋(𝑛)

Proof of Theorem iunhoiioolem
StepHypRef Expression
1 iunhoiioolem.K . . . . . 6 𝑘𝜑
2 eqid 2729 . . . . . 6 (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) = (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
3 iunhoiioolem.f . . . . . . . . . . 11 (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
4 ixpf 8847 . . . . . . . . . . 11 (𝐹X𝑘𝑋 (𝐴(,)𝐵) → 𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
6 ioossre 13310 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
76rgenw 3048 . . . . . . . . . . . 12 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ
87a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
9 iunss 4994 . . . . . . . . . . 11 ( 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
108, 9sylibr 234 . . . . . . . . . 10 (𝜑 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
115, 10fssd 6669 . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
1211ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
13 iunhoiioolem.a . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1412, 13resubcld 11548 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
1513rexrd 11165 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
16 iunhoiioolem.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
173adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴(,)𝐵))
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
19 fvixp2 45197 . . . . . . . . . 10 ((𝐹X𝑘𝑋 (𝐴(,)𝐵) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
2017, 18, 19syl2anc 584 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
21 ioogtlb 45496 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → 𝐴 < (𝐹𝑘))
2215, 16, 20, 21syl3anc 1373 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 < (𝐹𝑘))
2313, 12posdifd 11707 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴 < (𝐹𝑘) ↔ 0 < ((𝐹𝑘) − 𝐴)))
2422, 23mpbid 232 . . . . . . 7 ((𝜑𝑘𝑋) → 0 < ((𝐹𝑘) − 𝐴))
2514, 24elrpd 12934 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ+)
261, 2, 25rnmptssd 45194 . . . . 5 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ+)
27 iunhoiioolem.c . . . . . 6 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
28 ltso 11196 . . . . . . . 8 < Or ℝ
2928a1i 11 . . . . . . 7 (𝜑 → < Or ℝ)
30 iunhoiioolem.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
312rnmptfi 45169 . . . . . . . 8 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
3230, 31syl 17 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
33 iunhoiioolem.n . . . . . . . 8 (𝜑𝑋 ≠ ∅)
341, 14, 2, 33rnmptn0 6193 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅)
351, 2, 14rnmptssd 45194 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
36 fiinfcl 9393 . . . . . . 7 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3729, 32, 34, 35, 36syl13anc 1374 . . . . . 6 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3827, 37eqeltrid 2832 . . . . 5 (𝜑𝐶 ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3926, 38sseldd 3936 . . . 4 (𝜑𝐶 ∈ ℝ+)
40 rpgtrecnn 45379 . . . 4 (𝐶 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
4139, 40syl 17 . . 3 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
423elexd 3460 . . . . . . . 8 (𝜑𝐹 ∈ V)
4342ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 ∈ V)
445ffnd 6653 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
4544ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 Fn 𝑋)
46 nfv 1914 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
471, 46nfan 1899 . . . . . . . . 9 𝑘(𝜑𝑛 ∈ ℕ)
48 nfcv 2891 . . . . . . . . . 10 𝑘(1 / 𝑛)
49 nfcv 2891 . . . . . . . . . 10 𝑘 <
50 nfmpt1 5191 . . . . . . . . . . . . 13 𝑘(𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
5150nfrn 5894 . . . . . . . . . . . 12 𝑘ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
52 nfcv 2891 . . . . . . . . . . . 12 𝑘
5351, 52, 49nfinf 9373 . . . . . . . . . . 11 𝑘inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
5427, 53nfcxfr 2889 . . . . . . . . . 10 𝑘𝐶
5548, 49, 54nfbr 5139 . . . . . . . . 9 𝑘(1 / 𝑛) < 𝐶
5647, 55nfan 1899 . . . . . . . 8 𝑘((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶)
5713adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
58 nnrecre 12170 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5958ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
6057, 59readdcld 11144 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
6160rexrd 11165 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6261adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6316adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
6463adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
65 ressxr 11159 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
6665a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6711, 66fssd 6669 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℝ*)
6867ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹:𝑋⟶ℝ*)
6968ffvelcdmda 7018 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7060adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
7112ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
7259adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
7335, 38sseldd 3936 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
7473ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ∈ ℝ)
7514ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
76 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < 𝐶)
7735ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
7832ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
79 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋𝑘𝑋)
80 ovexd 7384 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ V)
812elrnmpt1 5902 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑋 ∧ ((𝐹𝑘) − 𝐴) ∈ V) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8279, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8382adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
84 infrefilb 12111 . . . . . . . . . . . . . . . 16 ((ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8577, 78, 83, 84syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8627, 85eqbrtrid 5127 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8786adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8872, 74, 75, 76, 87ltletrd 11276 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐹𝑘) − 𝐴))
8957adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
9089, 72, 71ltaddsub2d 11721 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛)) < (𝐹𝑘) ↔ (1 / 𝑛) < ((𝐹𝑘) − 𝐴)))
9188, 90mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) < (𝐹𝑘))
9270, 71, 91ltled 11264 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ≤ (𝐹𝑘))
93 iooltub 45511 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → (𝐹𝑘) < 𝐵)
9415, 16, 20, 93syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐹𝑘) < 𝐵)
9594ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) < 𝐵)
9662, 64, 69, 92, 95elicod 13298 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9796ex 412 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝑘𝑋 → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
9856, 97ralrimi 3227 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9943, 45, 983jca 1128 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
100 elixp2 8828 . . . . . 6 (𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
10199, 100sylibr 234 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
102101ex 412 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝐶𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
103102reximdva 3142 . . 3 (𝜑 → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
10441, 103mpd 15 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
105 eliun 4945 . 2 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
106104, 105sylibr 234 1 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  wss 3903  c0 4284   ciun 4941   class class class wbr 5092  cmpt 5173   Or wor 5526  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Xcixp 8824  Fincfn 8872  infcinf 9331  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  +crp 12893  (,)cioo 13248  [,)cico 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ioo 13252  df-ico 13254  df-fl 13696
This theorem is referenced by:  iunhoiioo  46677
  Copyright terms: Public domain W3C validator