Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunhoiioolem Structured version   Visualization version   GIF version

Theorem iunhoiioolem 46680
Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiioolem.K 𝑘𝜑
iunhoiioolem.x (𝜑𝑋 ∈ Fin)
iunhoiioolem.n (𝜑𝑋 ≠ ∅)
iunhoiioolem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiioolem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
iunhoiioolem.f (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
iunhoiioolem.c 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
Assertion
Ref Expression
iunhoiioolem (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Distinct variable groups:   𝐶,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑘)   𝑋(𝑛)

Proof of Theorem iunhoiioolem
StepHypRef Expression
1 iunhoiioolem.K . . . . . 6 𝑘𝜑
2 eqid 2730 . . . . . 6 (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) = (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
3 iunhoiioolem.f . . . . . . . . . . 11 (𝜑𝐹X𝑘𝑋 (𝐴(,)𝐵))
4 ixpf 8896 . . . . . . . . . . 11 (𝐹X𝑘𝑋 (𝐴(,)𝐵) → 𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋 𝑘𝑋 (𝐴(,)𝐵))
6 ioossre 13375 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
76rgenw 3049 . . . . . . . . . . . 12 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ
87a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
9 iunss 5012 . . . . . . . . . . 11 ( 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
108, 9sylibr 234 . . . . . . . . . 10 (𝜑 𝑘𝑋 (𝐴(,)𝐵) ⊆ ℝ)
115, 10fssd 6708 . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
1211ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
13 iunhoiioolem.a . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1412, 13resubcld 11613 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
1513rexrd 11231 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
16 iunhoiioolem.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
173adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴(,)𝐵))
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
19 fvixp2 45200 . . . . . . . . . 10 ((𝐹X𝑘𝑋 (𝐴(,)𝐵) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
2017, 18, 19syl2anc 584 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴(,)𝐵))
21 ioogtlb 45500 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → 𝐴 < (𝐹𝑘))
2215, 16, 20, 21syl3anc 1373 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐴 < (𝐹𝑘))
2313, 12posdifd 11772 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴 < (𝐹𝑘) ↔ 0 < ((𝐹𝑘) − 𝐴)))
2422, 23mpbid 232 . . . . . . 7 ((𝜑𝑘𝑋) → 0 < ((𝐹𝑘) − 𝐴))
2514, 24elrpd 12999 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ+)
261, 2, 25rnmptssd 45197 . . . . 5 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ+)
27 iunhoiioolem.c . . . . . 6 𝐶 = inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
28 ltso 11261 . . . . . . . 8 < Or ℝ
2928a1i 11 . . . . . . 7 (𝜑 → < Or ℝ)
30 iunhoiioolem.x . . . . . . . 8 (𝜑𝑋 ∈ Fin)
312rnmptfi 45172 . . . . . . . 8 (𝑋 ∈ Fin → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
3230, 31syl 17 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
33 iunhoiioolem.n . . . . . . . 8 (𝜑𝑋 ≠ ∅)
341, 14, 2, 33rnmptn0 6220 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅)
351, 2, 14rnmptssd 45197 . . . . . . 7 (𝜑 → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
36 fiinfcl 9461 . . . . . . 7 (( < Or ℝ ∧ (ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ≠ ∅ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3729, 32, 34, 35, 36syl13anc 1374 . . . . . 6 (𝜑 → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3827, 37eqeltrid 2833 . . . . 5 (𝜑𝐶 ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
3926, 38sseldd 3950 . . . 4 (𝜑𝐶 ∈ ℝ+)
40 rpgtrecnn 45383 . . . 4 (𝐶 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
4139, 40syl 17 . . 3 (𝜑 → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶)
423elexd 3474 . . . . . . . 8 (𝜑𝐹 ∈ V)
4342ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 ∈ V)
445ffnd 6692 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
4544ad2antrr 726 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹 Fn 𝑋)
46 nfv 1914 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
471, 46nfan 1899 . . . . . . . . 9 𝑘(𝜑𝑛 ∈ ℕ)
48 nfcv 2892 . . . . . . . . . 10 𝑘(1 / 𝑛)
49 nfcv 2892 . . . . . . . . . 10 𝑘 <
50 nfmpt1 5209 . . . . . . . . . . . . 13 𝑘(𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
5150nfrn 5919 . . . . . . . . . . . 12 𝑘ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))
52 nfcv 2892 . . . . . . . . . . . 12 𝑘
5351, 52, 49nfinf 9441 . . . . . . . . . . 11 𝑘inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < )
5427, 53nfcxfr 2890 . . . . . . . . . 10 𝑘𝐶
5548, 49, 54nfbr 5157 . . . . . . . . 9 𝑘(1 / 𝑛) < 𝐶
5647, 55nfan 1899 . . . . . . . 8 𝑘((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶)
5713adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
58 nnrecre 12235 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5958ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
6057, 59readdcld 11210 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
6160rexrd 11231 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6261adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ*)
6316adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
6463adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ*)
65 ressxr 11225 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
6665a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6711, 66fssd 6708 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℝ*)
6867ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹:𝑋⟶ℝ*)
6968ffvelcdmda 7059 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7060adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ∈ ℝ)
7112ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
7259adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
7335, 38sseldd 3950 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
7473ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ∈ ℝ)
7514ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
76 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < 𝐶)
7735ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ)
7832ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin)
79 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋𝑘𝑋)
80 ovexd 7425 . . . . . . . . . . . . . . . . . 18 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ V)
812elrnmpt1 5927 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑋 ∧ ((𝐹𝑘) − 𝐴) ∈ V) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8279, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝑘𝑋 → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
8382adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)))
84 infrefilb 12176 . . . . . . . . . . . . . . . 16 ((ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ⊆ ℝ ∧ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)) ∈ Fin ∧ ((𝐹𝑘) − 𝐴) ∈ ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴))) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8577, 78, 83, 84syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → inf(ran (𝑘𝑋 ↦ ((𝐹𝑘) − 𝐴)), ℝ, < ) ≤ ((𝐹𝑘) − 𝐴))
8627, 85eqbrtrid 5145 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8786adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐶 ≤ ((𝐹𝑘) − 𝐴))
8872, 74, 75, 76, 87ltletrd 11341 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (1 / 𝑛) < ((𝐹𝑘) − 𝐴))
8957adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
9089, 72, 71ltaddsub2d 11786 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → ((𝐴 + (1 / 𝑛)) < (𝐹𝑘) ↔ (1 / 𝑛) < ((𝐹𝑘) − 𝐴)))
9188, 90mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) < (𝐹𝑘))
9270, 71, 91ltled 11329 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐴 + (1 / 𝑛)) ≤ (𝐹𝑘))
93 iooltub 45515 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴(,)𝐵)) → (𝐹𝑘) < 𝐵)
9415, 16, 20, 93syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐹𝑘) < 𝐵)
9594ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) < 𝐵)
9662, 64, 69, 92, 95elicod 13363 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9796ex 412 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝑘𝑋 → (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
9856, 97ralrimi 3236 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵))
9943, 45, 983jca 1128 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
100 elixp2 8877 . . . . . 6 (𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ ((𝐴 + (1 / 𝑛))[,)𝐵)))
10199, 100sylibr 234 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝐶) → 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
102101ex 412 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝐶𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
103102reximdva 3147 . . 3 (𝜑 → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐶 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵)))
10441, 103mpd 15 . 2 (𝜑 → ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
105 eliun 4962 . 2 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵) ↔ ∃𝑛 ∈ ℕ 𝐹X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
106104, 105sylibr 234 1 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 ((𝐴 + (1 / 𝑛))[,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   ciun 4958   class class class wbr 5110  cmpt 5191   Or wor 5548  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Xcixp 8873  Fincfn 8921  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  +crp 12958  (,)cioo 13313  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-ico 13319  df-fl 13761
This theorem is referenced by:  iunhoiioo  46681
  Copyright terms: Public domain W3C validator