Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxrlem Structured version   Visualization version   GIF version

Theorem ioorrnopnxrlem 42598
Description: Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxrlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnxrlem.a (𝜑𝐴:𝑋⟶ℝ*)
ioorrnopnxrlem.b (𝜑𝐵:𝑋⟶ℝ*)
ioorrnopnxrlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnxrlem.l 𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
ioorrnopnxrlem.r 𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
ioorrnopnxrlem.v 𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))
Assertion
Ref Expression
ioorrnopnxrlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑖,𝐹,𝑣   𝑖,𝐿   𝑅,𝑖   𝑣,𝑉   𝑖,𝑋,𝑣   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑖)   𝐵(𝑖)   𝑅(𝑣)   𝐿(𝑣)   𝑉(𝑖)

Proof of Theorem ioorrnopnxrlem
StepHypRef Expression
1 ioorrnopnxrlem.v . . . 4 𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))
21a1i 11 . . 3 (𝜑𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)))
3 ioorrnopnxrlem.x . . . 4 (𝜑𝑋 ∈ Fin)
4 iftrue 4475 . . . . . . . 8 ((𝐴𝑖) = -∞ → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = ((𝐹𝑖) − 1))
54adantl 484 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = ((𝐹𝑖) − 1))
6 ioorrnopnxrlem.f . . . . . . . . . . . 12 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
76adantr 483 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
8 simpr 487 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 𝑖𝑋)
9 fvixp2 41468 . . . . . . . . . . 11 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
107, 8, 9syl2anc 586 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
1110elioored 41832 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12 1red 10644 . . . . . . . . 9 ((𝜑𝑖𝑋) → 1 ∈ ℝ)
1311, 12resubcld 11070 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 1) ∈ ℝ)
1413adantr 483 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐹𝑖) − 1) ∈ ℝ)
155, 14eqeltrd 2915 . . . . . 6 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
16 iffalse 4478 . . . . . . . 8 (¬ (𝐴𝑖) = -∞ → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = (𝐴𝑖))
1716adantl 484 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = (𝐴𝑖))
18 neqne 3026 . . . . . . . . 9 (¬ (𝐴𝑖) = -∞ → (𝐴𝑖) ≠ -∞)
1918adantl 484 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ≠ -∞)
20 ioorrnopnxrlem.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ*)
2120ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2221adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ∈ ℝ*)
23 simpr 487 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ≠ -∞)
24 pnfxr 10697 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → +∞ ∈ ℝ*)
2611rexrd 10693 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ*)
27 ioorrnopnxrlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ*)
2827ffvelrnda 6853 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
29 ioogtlb 41777 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3021, 28, 10, 29syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3111ltpnfd 12519 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) < +∞)
3221, 26, 25, 30, 31xrlttrd 12555 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) < +∞)
3321, 25, 32xrltned 41632 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐴𝑖) ≠ +∞)
3433adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ≠ +∞)
3522, 23, 34xrred 41640 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ∈ ℝ)
3619, 35syldan 593 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ∈ ℝ)
3717, 36eqeltrd 2915 . . . . . 6 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
3815, 37pm2.61dan 811 . . . . 5 ((𝜑𝑖𝑋) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
39 ioorrnopnxrlem.l . . . . 5 𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
4038, 39fmptd 6880 . . . 4 (𝜑𝐿:𝑋⟶ℝ)
41 iftrue 4475 . . . . . . . 8 ((𝐵𝑖) = +∞ → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = ((𝐹𝑖) + 1))
4241adantl 484 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = ((𝐹𝑖) + 1))
4311, 12readdcld 10672 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 1) ∈ ℝ)
4443adantr 483 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) ∈ ℝ)
4542, 44eqeltrd 2915 . . . . . 6 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
46 iffalse 4478 . . . . . . . 8 (¬ (𝐵𝑖) = +∞ → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = (𝐵𝑖))
4746adantl 484 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = (𝐵𝑖))
48 neqne 3026 . . . . . . . . 9 (¬ (𝐵𝑖) = +∞ → (𝐵𝑖) ≠ +∞)
4948adantl 484 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) ≠ +∞)
5028adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ∈ ℝ*)
51 mnfxr 10700 . . . . . . . . . . . 12 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → -∞ ∈ ℝ*)
5311mnfltd 12522 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → -∞ < (𝐹𝑖))
54 iooltub 41793 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
5521, 28, 10, 54syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
5652, 26, 28, 53, 55xrlttrd 12555 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → -∞ < (𝐵𝑖))
5752, 28, 56xrgtned 41597 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐵𝑖) ≠ -∞)
5857adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ≠ -∞)
59 simpr 487 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ≠ +∞)
6050, 58, 59xrred 41640 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ∈ ℝ)
6149, 60syldan 593 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) ∈ ℝ)
6247, 61eqeltrd 2915 . . . . . 6 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
6345, 62pm2.61dan 811 . . . . 5 ((𝜑𝑖𝑋) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
64 ioorrnopnxrlem.r . . . . 5 𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
6563, 64fmptd 6880 . . . 4 (𝜑𝑅:𝑋⟶ℝ)
663, 40, 65ioorrnopn 42597 . . 3 (𝜑X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
672, 66eqeltrd 2915 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
686elexd 3516 . . . . . 6 (𝜑𝐹 ∈ V)
69 ixpfn 8469 . . . . . . 7 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹 Fn 𝑋)
706, 69syl 17 . . . . . 6 (𝜑𝐹 Fn 𝑋)
7140ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝐿𝑖) ∈ ℝ)
7271rexrd 10693 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐿𝑖) ∈ ℝ*)
7365ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝑅𝑖) ∈ ℝ)
7473rexrd 10693 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝑅𝑖) ∈ ℝ*)
7539a1i 11 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖))))
7638elexd 3516 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ V)
7775, 76fvmpt2d 6783 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
7877adantr 483 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
7978, 5eqtrd 2858 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) = ((𝐹𝑖) − 1))
8011ltm1d 11574 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 1) < (𝐹𝑖))
8180adantr 483 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐹𝑖) − 1) < (𝐹𝑖))
8279, 81eqbrtrd 5090 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) < (𝐹𝑖))
8377adantr 483 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
8483, 17eqtrd 2858 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) = (𝐴𝑖))
8530adantr 483 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) < (𝐹𝑖))
8684, 85eqbrtrd 5090 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) < (𝐹𝑖))
8782, 86pm2.61dan 811 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐿𝑖) < (𝐹𝑖))
8811ltp1d 11572 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐹𝑖) < ((𝐹𝑖) + 1))
8988adantr 483 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐹𝑖) < ((𝐹𝑖) + 1))
9064a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖))))
9163elexd 3516 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ V)
9290, 91fvmpt2d 6783 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9392adantr 483 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9493, 42eqtrd 2858 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) = ((𝐹𝑖) + 1))
9594eqcomd 2829 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) = (𝑅𝑖))
9689, 95breqtrd 5094 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝑅𝑖))
9755adantr 483 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝐵𝑖))
9892adantr 483 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9998, 47eqtrd 2858 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) = (𝐵𝑖))
10099eqcomd 2829 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) = (𝑅𝑖))
10197, 100breqtrd 5094 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝑅𝑖))
10296, 101pm2.61dan 811 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝑅𝑖))
10372, 74, 11, 87, 102eliood 41780 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖)))
104103ralrimiva 3184 . . . . . 6 (𝜑 → ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖)))
10568, 70, 1043jca 1124 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖))))
106 elixp2 8467 . . . . 5 (𝐹X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖))))
107105, 106sylibr 236 . . . 4 (𝜑𝐹X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)))
108107, 1eleqtrrdi 2926 . . 3 (𝜑𝐹𝑉)
10921adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) ∈ ℝ*)
11072adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) ∈ ℝ*)
11115mnfltd 12522 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → -∞ < if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
112111, 5breqtrd 5094 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → -∞ < ((𝐹𝑖) − 1))
113 simpr 487 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) = -∞)
114113, 79breq12d 5081 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐴𝑖) < (𝐿𝑖) ↔ -∞ < ((𝐹𝑖) − 1)))
115112, 114mpbird 259 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) < (𝐿𝑖))
116109, 110, 115xrltled 12546 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) ≤ (𝐿𝑖))
11784eqcomd 2829 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) = (𝐿𝑖))
11836, 117eqled 10745 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ≤ (𝐿𝑖))
119116, 118pm2.61dan 811 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ (𝐿𝑖))
12074adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) ∈ ℝ*)
12128adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐵𝑖) ∈ ℝ*)
12244ltpnfd 12519 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) < +∞)
123 simpr 487 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐵𝑖) = +∞)
12494, 123breq12d 5081 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝑅𝑖) < (𝐵𝑖) ↔ ((𝐹𝑖) + 1) < +∞))
125122, 124mpbird 259 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) < (𝐵𝑖))
126120, 121, 125xrltled 12546 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) ≤ (𝐵𝑖))
12773adantr 483 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) ∈ ℝ)
128127, 99eqled 10745 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) ≤ (𝐵𝑖))
129126, 128pm2.61dan 811 . . . . . . 7 ((𝜑𝑖𝑋) → (𝑅𝑖) ≤ (𝐵𝑖))
130 ioossioo 12832 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ*) ∧ ((𝐴𝑖) ≤ (𝐿𝑖) ∧ (𝑅𝑖) ≤ (𝐵𝑖))) → ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
13121, 28, 119, 129, 130syl22anc 836 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
132131ralrimiva 3184 . . . . 5 (𝜑 → ∀𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
133 ss2ixp 8476 . . . . 5 (∀𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)) → X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
134132, 133syl 17 . . . 4 (𝜑X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1352, 134eqsstrd 4007 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
136108, 135jca 514 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
137 eleq2 2903 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
138 sseq1 3994 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
139137, 138anbi12d 632 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
140139rspcev 3625 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
14167, 136, 140syl2anc 586 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  Xcixp 8463  Fincfn 8511  cr 10538  1c1 10540   + caddc 10542  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cmin 10872  (,)cioo 12741  TopOpenctopn 16697  ℝ^crrx 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-prds 16723  df-pws 16725  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-rnghom 19469  df-drng 19506  df-field 19507  df-subrg 19535  df-abv 19590  df-staf 19618  df-srng 19619  df-lmod 19638  df-lss 19706  df-lmhm 19796  df-lvec 19877  df-sra 19946  df-rgmod 19947  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-refld 20751  df-phl 20772  df-dsmm 20878  df-frlm 20893  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-xms 22932  df-ms 22933  df-nm 23194  df-ngp 23195  df-tng 23196  df-nrg 23197  df-nlm 23198  df-clm 23669  df-cph 23774  df-tcph 23775  df-rrx 23990
This theorem is referenced by:  ioorrnopnxr  42599
  Copyright terms: Public domain W3C validator