Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxrlem Structured version   Visualization version   GIF version

Theorem ioorrnopnxrlem 44537
Description: Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxrlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnxrlem.a (𝜑𝐴:𝑋⟶ℝ*)
ioorrnopnxrlem.b (𝜑𝐵:𝑋⟶ℝ*)
ioorrnopnxrlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnxrlem.l 𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
ioorrnopnxrlem.r 𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
ioorrnopnxrlem.v 𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))
Assertion
Ref Expression
ioorrnopnxrlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑖,𝐹,𝑣   𝑖,𝐿   𝑅,𝑖   𝑣,𝑉   𝑖,𝑋,𝑣   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑖)   𝐵(𝑖)   𝑅(𝑣)   𝐿(𝑣)   𝑉(𝑖)

Proof of Theorem ioorrnopnxrlem
StepHypRef Expression
1 ioorrnopnxrlem.v . . . 4 𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))
21a1i 11 . . 3 (𝜑𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)))
3 ioorrnopnxrlem.x . . . 4 (𝜑𝑋 ∈ Fin)
4 iftrue 4492 . . . . . . . 8 ((𝐴𝑖) = -∞ → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = ((𝐹𝑖) − 1))
54adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = ((𝐹𝑖) − 1))
6 ioorrnopnxrlem.f . . . . . . . . . . . 12 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
76adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
8 simpr 485 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 𝑖𝑋)
9 fvixp2 43409 . . . . . . . . . . 11 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
107, 8, 9syl2anc 584 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
1110elioored 43777 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12 1red 11156 . . . . . . . . 9 ((𝜑𝑖𝑋) → 1 ∈ ℝ)
1311, 12resubcld 11583 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 1) ∈ ℝ)
1413adantr 481 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐹𝑖) − 1) ∈ ℝ)
155, 14eqeltrd 2838 . . . . . 6 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
16 iffalse 4495 . . . . . . . 8 (¬ (𝐴𝑖) = -∞ → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = (𝐴𝑖))
1716adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = (𝐴𝑖))
18 neqne 2951 . . . . . . . . 9 (¬ (𝐴𝑖) = -∞ → (𝐴𝑖) ≠ -∞)
1918adantl 482 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ≠ -∞)
20 ioorrnopnxrlem.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ*)
2120ffvelcdmda 7035 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2221adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ∈ ℝ*)
23 simpr 485 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ≠ -∞)
24 pnfxr 11209 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → +∞ ∈ ℝ*)
2611rexrd 11205 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ*)
27 ioorrnopnxrlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ*)
2827ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
29 ioogtlb 43723 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3021, 28, 10, 29syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3111ltpnfd 13042 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) < +∞)
3221, 26, 25, 30, 31xrlttrd 13078 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) < +∞)
3321, 25, 32xrltned 43581 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐴𝑖) ≠ +∞)
3433adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ≠ +∞)
3522, 23, 34xrred 43589 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ∈ ℝ)
3619, 35syldan 591 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ∈ ℝ)
3717, 36eqeltrd 2838 . . . . . 6 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
3815, 37pm2.61dan 811 . . . . 5 ((𝜑𝑖𝑋) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
39 ioorrnopnxrlem.l . . . . 5 𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
4038, 39fmptd 7062 . . . 4 (𝜑𝐿:𝑋⟶ℝ)
41 iftrue 4492 . . . . . . . 8 ((𝐵𝑖) = +∞ → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = ((𝐹𝑖) + 1))
4241adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = ((𝐹𝑖) + 1))
4311, 12readdcld 11184 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 1) ∈ ℝ)
4443adantr 481 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) ∈ ℝ)
4542, 44eqeltrd 2838 . . . . . 6 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
46 iffalse 4495 . . . . . . . 8 (¬ (𝐵𝑖) = +∞ → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = (𝐵𝑖))
4746adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = (𝐵𝑖))
48 neqne 2951 . . . . . . . . 9 (¬ (𝐵𝑖) = +∞ → (𝐵𝑖) ≠ +∞)
4948adantl 482 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) ≠ +∞)
5028adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ∈ ℝ*)
51 mnfxr 11212 . . . . . . . . . . . 12 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → -∞ ∈ ℝ*)
5311mnfltd 13045 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → -∞ < (𝐹𝑖))
54 iooltub 43738 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
5521, 28, 10, 54syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
5652, 26, 28, 53, 55xrlttrd 13078 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → -∞ < (𝐵𝑖))
5752, 28, 56xrgtned 43546 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐵𝑖) ≠ -∞)
5857adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ≠ -∞)
59 simpr 485 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ≠ +∞)
6050, 58, 59xrred 43589 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ∈ ℝ)
6149, 60syldan 591 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) ∈ ℝ)
6247, 61eqeltrd 2838 . . . . . 6 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
6345, 62pm2.61dan 811 . . . . 5 ((𝜑𝑖𝑋) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
64 ioorrnopnxrlem.r . . . . 5 𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
6563, 64fmptd 7062 . . . 4 (𝜑𝑅:𝑋⟶ℝ)
663, 40, 65ioorrnopn 44536 . . 3 (𝜑X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
672, 66eqeltrd 2838 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
686elexd 3465 . . . . . 6 (𝜑𝐹 ∈ V)
69 ixpfn 8841 . . . . . . 7 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹 Fn 𝑋)
706, 69syl 17 . . . . . 6 (𝜑𝐹 Fn 𝑋)
7140ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝐿𝑖) ∈ ℝ)
7271rexrd 11205 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐿𝑖) ∈ ℝ*)
7365ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝑅𝑖) ∈ ℝ)
7473rexrd 11205 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝑅𝑖) ∈ ℝ*)
7539a1i 11 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖))))
7638elexd 3465 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ V)
7775, 76fvmpt2d 6961 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
7877adantr 481 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
7978, 5eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) = ((𝐹𝑖) − 1))
8011ltm1d 12087 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 1) < (𝐹𝑖))
8180adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐹𝑖) − 1) < (𝐹𝑖))
8279, 81eqbrtrd 5127 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) < (𝐹𝑖))
8377adantr 481 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
8483, 17eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) = (𝐴𝑖))
8530adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) < (𝐹𝑖))
8684, 85eqbrtrd 5127 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) < (𝐹𝑖))
8782, 86pm2.61dan 811 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐿𝑖) < (𝐹𝑖))
8811ltp1d 12085 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐹𝑖) < ((𝐹𝑖) + 1))
8988adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐹𝑖) < ((𝐹𝑖) + 1))
9064a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖))))
9163elexd 3465 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ V)
9290, 91fvmpt2d 6961 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9392adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9493, 42eqtrd 2776 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) = ((𝐹𝑖) + 1))
9594eqcomd 2742 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) = (𝑅𝑖))
9689, 95breqtrd 5131 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝑅𝑖))
9755adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝐵𝑖))
9892adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9998, 47eqtrd 2776 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) = (𝐵𝑖))
10099eqcomd 2742 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) = (𝑅𝑖))
10197, 100breqtrd 5131 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝑅𝑖))
10296, 101pm2.61dan 811 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝑅𝑖))
10372, 74, 11, 87, 102eliood 43726 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖)))
104103ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖)))
10568, 70, 1043jca 1128 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖))))
106 elixp2 8839 . . . . 5 (𝐹X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖))))
107105, 106sylibr 233 . . . 4 (𝜑𝐹X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)))
108107, 1eleqtrrdi 2849 . . 3 (𝜑𝐹𝑉)
10921adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) ∈ ℝ*)
11072adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) ∈ ℝ*)
11115mnfltd 13045 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → -∞ < if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
112111, 5breqtrd 5131 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → -∞ < ((𝐹𝑖) − 1))
113 simpr 485 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) = -∞)
114113, 79breq12d 5118 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐴𝑖) < (𝐿𝑖) ↔ -∞ < ((𝐹𝑖) − 1)))
115112, 114mpbird 256 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) < (𝐿𝑖))
116109, 110, 115xrltled 13069 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) ≤ (𝐿𝑖))
11784eqcomd 2742 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) = (𝐿𝑖))
11836, 117eqled 11258 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ≤ (𝐿𝑖))
119116, 118pm2.61dan 811 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ (𝐿𝑖))
12074adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) ∈ ℝ*)
12128adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐵𝑖) ∈ ℝ*)
12244ltpnfd 13042 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) < +∞)
123 simpr 485 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐵𝑖) = +∞)
12494, 123breq12d 5118 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝑅𝑖) < (𝐵𝑖) ↔ ((𝐹𝑖) + 1) < +∞))
125122, 124mpbird 256 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) < (𝐵𝑖))
126120, 121, 125xrltled 13069 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) ≤ (𝐵𝑖))
12773adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) ∈ ℝ)
128127, 99eqled 11258 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) ≤ (𝐵𝑖))
129126, 128pm2.61dan 811 . . . . . . 7 ((𝜑𝑖𝑋) → (𝑅𝑖) ≤ (𝐵𝑖))
130 ioossioo 13358 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ*) ∧ ((𝐴𝑖) ≤ (𝐿𝑖) ∧ (𝑅𝑖) ≤ (𝐵𝑖))) → ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
13121, 28, 119, 129, 130syl22anc 837 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
132131ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
133 ss2ixp 8848 . . . . 5 (∀𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)) → X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
134132, 133syl 17 . . . 4 (𝜑X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1352, 134eqsstrd 3982 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
136108, 135jca 512 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
137 eleq2 2826 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
138 sseq1 3969 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
139137, 138anbi12d 631 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
140139rspcev 3581 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
14167, 136, 140syl2anc 584 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Xcixp 8835  Fincfn 8883  cr 11050  1c1 11052   + caddc 11054  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  (,)cioo 13264  TopOpenctopn 17303  ℝ^crrx 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-abv 20276  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-refld 21009  df-phl 21030  df-dsmm 21138  df-frlm 21153  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-tng 23940  df-nrg 23941  df-nlm 23942  df-clm 24426  df-cph 24532  df-tcph 24533  df-rrx 24749
This theorem is referenced by:  ioorrnopnxr  44538
  Copyright terms: Public domain W3C validator