Proof of Theorem ioorrnopnxrlem
Step | Hyp | Ref
| Expression |
1 | | ioorrnopnxrlem.v |
. . . 4
⊢ 𝑉 = X𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑉 = X𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖))) |
3 | | ioorrnopnxrlem.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Fin) |
4 | | iftrue 4466 |
. . . . . . . 8
⊢ ((𝐴‘𝑖) = -∞ → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) = ((𝐹‘𝑖) − 1)) |
5 | 4 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) = ((𝐹‘𝑖) − 1)) |
6 | | ioorrnopnxrlem.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
8 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) |
9 | | fvixp2 42745 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) ∈ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
10 | 7, 8, 9 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) ∈ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
11 | 10 | elioored 43094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) ∈ ℝ) |
12 | | 1red 10985 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → 1 ∈ ℝ) |
13 | 11, 12 | resubcld 11412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝐹‘𝑖) − 1) ∈ ℝ) |
14 | 13 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → ((𝐹‘𝑖) − 1) ∈ ℝ) |
15 | 5, 14 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) ∈ ℝ) |
16 | | iffalse 4469 |
. . . . . . . 8
⊢ (¬
(𝐴‘𝑖) = -∞ → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) = (𝐴‘𝑖)) |
17 | 16 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) = (𝐴‘𝑖)) |
18 | | neqne 2952 |
. . . . . . . . 9
⊢ (¬
(𝐴‘𝑖) = -∞ → (𝐴‘𝑖) ≠ -∞) |
19 | 18 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) ≠ -∞) |
20 | | ioorrnopnxrlem.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) |
21 | 20 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ∈
ℝ*) |
22 | 21 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) ≠ -∞) → (𝐴‘𝑖) ∈
ℝ*) |
23 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) ≠ -∞) → (𝐴‘𝑖) ≠ -∞) |
24 | | pnfxr 11038 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → +∞ ∈
ℝ*) |
26 | 11 | rexrd 11034 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) ∈
ℝ*) |
27 | | ioorrnopnxrlem.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) |
28 | 27 | ffvelrnda 6970 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ∈
ℝ*) |
29 | | ioogtlb 43040 |
. . . . . . . . . . . . 13
⊢ (((𝐴‘𝑖) ∈ ℝ* ∧ (𝐵‘𝑖) ∈ ℝ* ∧ (𝐹‘𝑖) ∈ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → (𝐴‘𝑖) < (𝐹‘𝑖)) |
30 | 21, 28, 10, 29 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) < (𝐹‘𝑖)) |
31 | 11 | ltpnfd 12866 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) < +∞) |
32 | 21, 26, 25, 30, 31 | xrlttrd 12902 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) < +∞) |
33 | 21, 25, 32 | xrltned 42903 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ≠ +∞) |
34 | 33 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) ≠ -∞) → (𝐴‘𝑖) ≠ +∞) |
35 | 22, 23, 34 | xrred 42911 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) ≠ -∞) → (𝐴‘𝑖) ∈ ℝ) |
36 | 19, 35 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) ∈ ℝ) |
37 | 17, 36 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) ∈ ℝ) |
38 | 15, 37 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) ∈ ℝ) |
39 | | ioorrnopnxrlem.l |
. . . . 5
⊢ 𝐿 = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) |
40 | 38, 39 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝐿:𝑋⟶ℝ) |
41 | | iftrue 4466 |
. . . . . . . 8
⊢ ((𝐵‘𝑖) = +∞ → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) = ((𝐹‘𝑖) + 1)) |
42 | 41 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) = ((𝐹‘𝑖) + 1)) |
43 | 11, 12 | readdcld 11013 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝐹‘𝑖) + 1) ∈ ℝ) |
44 | 43 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → ((𝐹‘𝑖) + 1) ∈ ℝ) |
45 | 42, 44 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) ∈ ℝ) |
46 | | iffalse 4469 |
. . . . . . . 8
⊢ (¬
(𝐵‘𝑖) = +∞ → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) = (𝐵‘𝑖)) |
47 | 46 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) = (𝐵‘𝑖)) |
48 | | neqne 2952 |
. . . . . . . . 9
⊢ (¬
(𝐵‘𝑖) = +∞ → (𝐵‘𝑖) ≠ +∞) |
49 | 48 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝐵‘𝑖) ≠ +∞) |
50 | 28 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) ≠ +∞) → (𝐵‘𝑖) ∈
ℝ*) |
51 | | mnfxr 11041 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
52 | 51 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → -∞ ∈
ℝ*) |
53 | 11 | mnfltd 12869 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → -∞ < (𝐹‘𝑖)) |
54 | | iooltub 43055 |
. . . . . . . . . . . . 13
⊢ (((𝐴‘𝑖) ∈ ℝ* ∧ (𝐵‘𝑖) ∈ ℝ* ∧ (𝐹‘𝑖) ∈ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) → (𝐹‘𝑖) < (𝐵‘𝑖)) |
55 | 21, 28, 10, 54 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) < (𝐵‘𝑖)) |
56 | 52, 26, 28, 53, 55 | xrlttrd 12902 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → -∞ < (𝐵‘𝑖)) |
57 | 52, 28, 56 | xrgtned 42868 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐵‘𝑖) ≠ -∞) |
58 | 57 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) ≠ +∞) → (𝐵‘𝑖) ≠ -∞) |
59 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) ≠ +∞) → (𝐵‘𝑖) ≠ +∞) |
60 | 50, 58, 59 | xrred 42911 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) ≠ +∞) → (𝐵‘𝑖) ∈ ℝ) |
61 | 49, 60 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝐵‘𝑖) ∈ ℝ) |
62 | 47, 61 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) ∈ ℝ) |
63 | 45, 62 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) ∈ ℝ) |
64 | | ioorrnopnxrlem.r |
. . . . 5
⊢ 𝑅 = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖))) |
65 | 63, 64 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝑅:𝑋⟶ℝ) |
66 | 3, 40, 65 | ioorrnopn 43853 |
. . 3
⊢ (𝜑 → X𝑖 ∈
𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ∈
(TopOpen‘(ℝ^‘𝑋))) |
67 | 2, 66 | eqeltrd 2840 |
. 2
⊢ (𝜑 → 𝑉 ∈ (TopOpen‘(ℝ^‘𝑋))) |
68 | 6 | elexd 3453 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
69 | | ixpfn 8700 |
. . . . . . 7
⊢ (𝐹 ∈ X𝑖 ∈
𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → 𝐹 Fn 𝑋) |
70 | 6, 69 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝑋) |
71 | 40 | ffvelrnda 6970 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐿‘𝑖) ∈ ℝ) |
72 | 71 | rexrd 11034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐿‘𝑖) ∈
ℝ*) |
73 | 65 | ffvelrnda 6970 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑅‘𝑖) ∈ ℝ) |
74 | 73 | rexrd 11034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑅‘𝑖) ∈
ℝ*) |
75 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)))) |
76 | 38 | elexd 3453 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖)) ∈ V) |
77 | 75, 76 | fvmpt2d 6897 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐿‘𝑖) = if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) |
78 | 77 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) = if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) |
79 | 78, 5 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) = ((𝐹‘𝑖) − 1)) |
80 | 11 | ltm1d 11916 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝐹‘𝑖) − 1) < (𝐹‘𝑖)) |
81 | 80 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → ((𝐹‘𝑖) − 1) < (𝐹‘𝑖)) |
82 | 79, 81 | eqbrtrd 5097 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) < (𝐹‘𝑖)) |
83 | 77 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) = if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) |
84 | 83, 17 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) = (𝐴‘𝑖)) |
85 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) < (𝐹‘𝑖)) |
86 | 84, 85 | eqbrtrd 5097 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) < (𝐹‘𝑖)) |
87 | 82, 86 | pm2.61dan 810 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐿‘𝑖) < (𝐹‘𝑖)) |
88 | 11 | ltp1d 11914 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) < ((𝐹‘𝑖) + 1)) |
89 | 88 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝐹‘𝑖) < ((𝐹‘𝑖) + 1)) |
90 | 64 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)))) |
91 | 63 | elexd 3453 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖)) ∈ V) |
92 | 90, 91 | fvmpt2d 6897 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑅‘𝑖) = if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖))) |
93 | 92 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) = if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖))) |
94 | 93, 42 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) = ((𝐹‘𝑖) + 1)) |
95 | 94 | eqcomd 2745 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → ((𝐹‘𝑖) + 1) = (𝑅‘𝑖)) |
96 | 89, 95 | breqtrd 5101 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝐹‘𝑖) < (𝑅‘𝑖)) |
97 | 55 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝐹‘𝑖) < (𝐵‘𝑖)) |
98 | 92 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) = if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖))) |
99 | 98, 47 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) = (𝐵‘𝑖)) |
100 | 99 | eqcomd 2745 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝐵‘𝑖) = (𝑅‘𝑖)) |
101 | 97, 100 | breqtrd 5101 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝐹‘𝑖) < (𝑅‘𝑖)) |
102 | 96, 101 | pm2.61dan 810 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) < (𝑅‘𝑖)) |
103 | 72, 74, 11, 87, 102 | eliood 43043 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐹‘𝑖) ∈ ((𝐿‘𝑖)(,)(𝑅‘𝑖))) |
104 | 103 | ralrimiva 3104 |
. . . . . 6
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 (𝐹‘𝑖) ∈ ((𝐿‘𝑖)(,)(𝑅‘𝑖))) |
105 | 68, 70, 104 | 3jca 1127 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝐹‘𝑖) ∈ ((𝐿‘𝑖)(,)(𝑅‘𝑖)))) |
106 | | elixp2 8698 |
. . . . 5
⊢ (𝐹 ∈ X𝑖 ∈
𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝐹‘𝑖) ∈ ((𝐿‘𝑖)(,)(𝑅‘𝑖)))) |
107 | 105, 106 | sylibr 233 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖))) |
108 | 107, 1 | eleqtrrdi 2851 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
109 | 21 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) ∈
ℝ*) |
110 | 72 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐿‘𝑖) ∈
ℝ*) |
111 | 15 | mnfltd 12869 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → -∞ < if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) |
112 | 111, 5 | breqtrd 5101 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → -∞ < ((𝐹‘𝑖) − 1)) |
113 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) = -∞) |
114 | 113, 79 | breq12d 5088 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → ((𝐴‘𝑖) < (𝐿‘𝑖) ↔ -∞ < ((𝐹‘𝑖) − 1))) |
115 | 112, 114 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) < (𝐿‘𝑖)) |
116 | 109, 110,
115 | xrltled 12893 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) ≤ (𝐿‘𝑖)) |
117 | 84 | eqcomd 2745 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) = (𝐿‘𝑖)) |
118 | 36, 117 | eqled 11087 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐴‘𝑖) = -∞) → (𝐴‘𝑖) ≤ (𝐿‘𝑖)) |
119 | 116, 118 | pm2.61dan 810 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐴‘𝑖) ≤ (𝐿‘𝑖)) |
120 | 74 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) ∈
ℝ*) |
121 | 28 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝐵‘𝑖) ∈
ℝ*) |
122 | 44 | ltpnfd 12866 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → ((𝐹‘𝑖) + 1) < +∞) |
123 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝐵‘𝑖) = +∞) |
124 | 94, 123 | breq12d 5088 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → ((𝑅‘𝑖) < (𝐵‘𝑖) ↔ ((𝐹‘𝑖) + 1) < +∞)) |
125 | 122, 124 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) < (𝐵‘𝑖)) |
126 | 120, 121,
125 | xrltled 12893 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) ≤ (𝐵‘𝑖)) |
127 | 73 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) ∈ ℝ) |
128 | 127, 99 | eqled 11087 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑋) ∧ ¬ (𝐵‘𝑖) = +∞) → (𝑅‘𝑖) ≤ (𝐵‘𝑖)) |
129 | 126, 128 | pm2.61dan 810 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑅‘𝑖) ≤ (𝐵‘𝑖)) |
130 | | ioossioo 13182 |
. . . . . . 7
⊢ ((((𝐴‘𝑖) ∈ ℝ* ∧ (𝐵‘𝑖) ∈ ℝ*) ∧ ((𝐴‘𝑖) ≤ (𝐿‘𝑖) ∧ (𝑅‘𝑖) ≤ (𝐵‘𝑖))) → ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⊆ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
131 | 21, 28, 119, 129, 130 | syl22anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⊆ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
132 | 131 | ralrimiva 3104 |
. . . . 5
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⊆ ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
133 | | ss2ixp 8707 |
. . . . 5
⊢
(∀𝑖 ∈
𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⊆ ((𝐴‘𝑖)(,)(𝐵‘𝑖)) → X𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
134 | 132, 133 | syl 17 |
. . . 4
⊢ (𝜑 → X𝑖 ∈
𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
135 | 2, 134 | eqsstrd 3960 |
. . 3
⊢ (𝜑 → 𝑉 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) |
136 | 108, 135 | jca 512 |
. 2
⊢ (𝜑 → (𝐹 ∈ 𝑉 ∧ 𝑉 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
137 | | eleq2 2828 |
. . . 4
⊢ (𝑣 = 𝑉 → (𝐹 ∈ 𝑣 ↔ 𝐹 ∈ 𝑉)) |
138 | | sseq1 3947 |
. . . 4
⊢ (𝑣 = 𝑉 → (𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ↔ 𝑉 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
139 | 137, 138 | anbi12d 631 |
. . 3
⊢ (𝑣 = 𝑉 → ((𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) ↔ (𝐹 ∈ 𝑉 ∧ 𝑉 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))))) |
140 | 139 | rspcev 3562 |
. 2
⊢ ((𝑉 ∈
(TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹 ∈ 𝑉 ∧ 𝑉 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |
141 | 67, 136, 140 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) |