Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt4d Structured version   Visualization version   GIF version

Theorem fvmpt4d 45251
Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
fvmpt4d.1 𝑥𝐴
fvmpt4d.2 (𝜑𝐵𝐶)
fvmpt4d.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
fvmpt4d (𝜑 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)

Proof of Theorem fvmpt4d
StepHypRef Expression
1 fvmpt4d.3 . 2 (𝜑𝑥𝐴)
2 fvmpt4d.2 . 2 (𝜑𝐵𝐶)
3 fvmpt4d.1 . . 3 𝑥𝐴
43fvmpt2f 7024 . 2 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
51, 2, 4syl2anc 584 1 (𝜑 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wnfc 2890  cmpt 5234  cfv 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator