| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmpt4d | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| fvmpt4d.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmpt4d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| fvmpt4d.3 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvmpt4d | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt4d.3 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | fvmpt4d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 3 | fvmpt4d.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | fvmpt2f 6971 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 ↦ cmpt 5190 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |