Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt4d Structured version   Visualization version   GIF version

Theorem fvmpt4d 45188
Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
fvmpt4d.1 𝑥𝐴
fvmpt4d.2 (𝜑𝐵𝐶)
fvmpt4d.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
fvmpt4d (𝜑 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)

Proof of Theorem fvmpt4d
StepHypRef Expression
1 fvmpt4d.3 . 2 (𝜑𝑥𝐴)
2 fvmpt4d.2 . 2 (𝜑𝐵𝐶)
3 fvmpt4d.1 . . 3 𝑥𝐴
43fvmpt2f 7032 . 2 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
51, 2, 4syl2anc 583 1 (𝜑 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wnfc 2893  cmpt 5249  cfv 6575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator