Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sub2times Structured version   Visualization version   GIF version

Theorem sub2times 41835
Description: Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sub2times (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)

Proof of Theorem sub2times
StepHypRef Expression
1 2times 11770 . . 3 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
21oveq2d 7165 . 2 (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = (𝐴 − (𝐴 + 𝐴)))
3 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
43, 3addcld 10658 . . 3 (𝐴 ∈ ℂ → (𝐴 + 𝐴) ∈ ℂ)
53, 4negsubd 11001 . 2 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 − (𝐴 + 𝐴)))
63, 3negdid 11008 . . . 4 (𝐴 ∈ ℂ → -(𝐴 + 𝐴) = (-𝐴 + -𝐴))
76oveq2d 7165 . . 3 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 + (-𝐴 + -𝐴)))
8 negcl 10884 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
93, 8, 8addassd 10661 . . 3 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (𝐴 + (-𝐴 + -𝐴)))
10 negid 10931 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
1110oveq1d 7164 . . . 4 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (0 + -𝐴))
128addid2d 10839 . . . 4 (𝐴 ∈ ℂ → (0 + -𝐴) = -𝐴)
1311, 12eqtrd 2859 . . 3 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = -𝐴)
147, 9, 133eqtr2d 2865 . 2 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = -𝐴)
152, 5, 143eqtr2d 2865 1 (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  (class class class)co 7149  cc 10533  0cc0 10535   + caddc 10538   · cmul 10540  cmin 10868  -cneg 10869  2c2 11689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-ltxr 10678  df-sub 10870  df-neg 10871  df-2 11697
This theorem is referenced by:  cosnegpi  42439
  Copyright terms: Public domain W3C validator