| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sub2times | Structured version Visualization version GIF version | ||
| Description: Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| sub2times | ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times 12410 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 2 | 1 | oveq2d 7446 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = (𝐴 − (𝐴 + 𝐴))) |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 4 | 3, 3 | addcld 11290 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + 𝐴) ∈ ℂ) |
| 5 | 3, 4 | negsubd 11634 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 − (𝐴 + 𝐴))) |
| 6 | 3, 3 | negdid 11641 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(𝐴 + 𝐴) = (-𝐴 + -𝐴)) |
| 7 | 6 | oveq2d 7446 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 + (-𝐴 + -𝐴))) |
| 8 | negcl 11517 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 9 | 3, 8, 8 | addassd 11293 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (𝐴 + (-𝐴 + -𝐴))) |
| 10 | negid 11564 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
| 11 | 10 | oveq1d 7445 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (0 + -𝐴)) |
| 12 | 8 | addlidd 11472 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 + -𝐴) = -𝐴) |
| 13 | 11, 12 | eqtrd 2769 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = -𝐴) |
| 14 | 7, 9, 13 | 3eqtr2d 2775 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = -𝐴) |
| 15 | 2, 5, 14 | 3eqtr2d 2775 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2100 (class class class)co 7430 ℂcc 11163 0cc0 11165 + caddc 11168 · cmul 11170 − cmin 11501 -cneg 11502 2c2 12329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-sep 5307 ax-nul 5314 ax-pow 5373 ax-pr 5437 ax-un 7751 ax-resscn 11222 ax-1cn 11223 ax-icn 11224 ax-addcl 11225 ax-addrcl 11226 ax-mulcl 11227 ax-mulrcl 11228 ax-mulcom 11229 ax-addass 11230 ax-mulass 11231 ax-distr 11232 ax-i2m1 11233 ax-1ne0 11234 ax-1rid 11235 ax-rnegex 11236 ax-rrecex 11237 ax-cnre 11238 ax-pre-lttri 11239 ax-pre-lttrn 11240 ax-pre-ltadd 11241 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3789 df-csb 3905 df-dif 3962 df-un 3964 df-in 3966 df-ss 3976 df-nul 4336 df-if 4537 df-pw 4612 df-sn 4637 df-pr 4639 df-op 4643 df-uni 4919 df-br 5157 df-opab 5219 df-mpt 5240 df-id 5584 df-po 5598 df-so 5599 df-xp 5692 df-rel 5693 df-cnv 5694 df-co 5695 df-dm 5696 df-rn 5697 df-res 5698 df-ima 5699 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7386 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8742 df-en 8983 df-dom 8984 df-sdom 8985 df-pnf 11307 df-mnf 11308 df-ltxr 11310 df-sub 11503 df-neg 11504 df-2 12337 |
| This theorem is referenced by: cosnegpi 45558 |
| Copyright terms: Public domain | W3C validator |