![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sub2times | Structured version Visualization version GIF version |
Description: Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sub2times | ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2times 11583 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
2 | 1 | oveq2d 6992 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = (𝐴 − (𝐴 + 𝐴))) |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 3, 3 | addcld 10459 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + 𝐴) ∈ ℂ) |
5 | 3, 4 | negsubd 10804 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 − (𝐴 + 𝐴))) |
6 | 3, 3 | negdid 10811 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(𝐴 + 𝐴) = (-𝐴 + -𝐴)) |
7 | 6 | oveq2d 6992 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 + (-𝐴 + -𝐴))) |
8 | negcl 10686 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
9 | 3, 8, 8 | addassd 10462 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (𝐴 + (-𝐴 + -𝐴))) |
10 | negid 10734 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
11 | 10 | oveq1d 6991 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (0 + -𝐴)) |
12 | 8 | addid2d 10641 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 + -𝐴) = -𝐴) |
13 | 11, 12 | eqtrd 2814 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = -𝐴) |
14 | 7, 9, 13 | 3eqtr2d 2820 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = -𝐴) |
15 | 2, 5, 14 | 3eqtr2d 2820 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 (class class class)co 6976 ℂcc 10333 0cc0 10335 + caddc 10338 · cmul 10340 − cmin 10670 -cneg 10671 2c2 11495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 df-sub 10672 df-neg 10673 df-2 11503 |
This theorem is referenced by: cosnegpi 41584 |
Copyright terms: Public domain | W3C validator |