Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sub2times Structured version   Visualization version   GIF version

Theorem sub2times 44957
Description: Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sub2times (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)

Proof of Theorem sub2times
StepHypRef Expression
1 2times 12410 . . 3 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
21oveq2d 7446 . 2 (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = (𝐴 − (𝐴 + 𝐴)))
3 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
43, 3addcld 11290 . . 3 (𝐴 ∈ ℂ → (𝐴 + 𝐴) ∈ ℂ)
53, 4negsubd 11634 . 2 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 − (𝐴 + 𝐴)))
63, 3negdid 11641 . . . 4 (𝐴 ∈ ℂ → -(𝐴 + 𝐴) = (-𝐴 + -𝐴))
76oveq2d 7446 . . 3 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 + (-𝐴 + -𝐴)))
8 negcl 11517 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
93, 8, 8addassd 11293 . . 3 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (𝐴 + (-𝐴 + -𝐴)))
10 negid 11564 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
1110oveq1d 7445 . . . 4 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (0 + -𝐴))
128addlidd 11472 . . . 4 (𝐴 ∈ ℂ → (0 + -𝐴) = -𝐴)
1311, 12eqtrd 2769 . . 3 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = -𝐴)
147, 9, 133eqtr2d 2775 . 2 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = -𝐴)
152, 5, 143eqtr2d 2775 1 (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2100  (class class class)co 7430  cc 11163  0cc0 11165   + caddc 11168   · cmul 11170  cmin 11501  -cneg 11502  2c2 12329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-10 2133  ax-11 2150  ax-12 2170  ax-ext 2700  ax-sep 5307  ax-nul 5314  ax-pow 5373  ax-pr 5437  ax-un 7751  ax-resscn 11222  ax-1cn 11223  ax-icn 11224  ax-addcl 11225  ax-addrcl 11226  ax-mulcl 11227  ax-mulrcl 11228  ax-mulcom 11229  ax-addass 11230  ax-mulass 11231  ax-distr 11232  ax-i2m1 11233  ax-1ne0 11234  ax-1rid 11235  ax-rnegex 11236  ax-rrecex 11237  ax-cnre 11238  ax-pre-lttri 11239  ax-pre-lttrn 11240  ax-pre-ltadd 11241
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2062  df-mo 2532  df-eu 2561  df-clab 2707  df-cleq 2721  df-clel 2806  df-nfc 2881  df-ne 2934  df-nel 3040  df-ral 3055  df-rex 3064  df-reu 3374  df-rab 3429  df-v 3474  df-sbc 3789  df-csb 3905  df-dif 3962  df-un 3964  df-in 3966  df-ss 3976  df-nul 4336  df-if 4537  df-pw 4612  df-sn 4637  df-pr 4639  df-op 4643  df-uni 4919  df-br 5157  df-opab 5219  df-mpt 5240  df-id 5584  df-po 5598  df-so 5599  df-xp 5692  df-rel 5693  df-cnv 5694  df-co 5695  df-dm 5696  df-rn 5697  df-res 5698  df-ima 5699  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7386  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8742  df-en 8983  df-dom 8984  df-sdom 8985  df-pnf 11307  df-mnf 11308  df-ltxr 11310  df-sub 11503  df-neg 11504  df-2 12337
This theorem is referenced by:  cosnegpi  45558
  Copyright terms: Public domain W3C validator