Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sub2times Structured version   Visualization version   GIF version

Theorem sub2times 45275
Description: Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sub2times (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)

Proof of Theorem sub2times
StepHypRef Expression
1 2times 12259 . . 3 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
21oveq2d 7365 . 2 (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = (𝐴 − (𝐴 + 𝐴)))
3 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
43, 3addcld 11134 . . 3 (𝐴 ∈ ℂ → (𝐴 + 𝐴) ∈ ℂ)
53, 4negsubd 11481 . 2 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 − (𝐴 + 𝐴)))
63, 3negdid 11488 . . . 4 (𝐴 ∈ ℂ → -(𝐴 + 𝐴) = (-𝐴 + -𝐴))
76oveq2d 7365 . . 3 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = (𝐴 + (-𝐴 + -𝐴)))
8 negcl 11363 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
93, 8, 8addassd 11137 . . 3 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (𝐴 + (-𝐴 + -𝐴)))
10 negid 11411 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
1110oveq1d 7364 . . . 4 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = (0 + -𝐴))
128addlidd 11317 . . . 4 (𝐴 ∈ ℂ → (0 + -𝐴) = -𝐴)
1311, 12eqtrd 2764 . . 3 (𝐴 ∈ ℂ → ((𝐴 + -𝐴) + -𝐴) = -𝐴)
147, 9, 133eqtr2d 2770 . 2 (𝐴 ∈ ℂ → (𝐴 + -(𝐴 + 𝐴)) = -𝐴)
152, 5, 143eqtr2d 2770 1 (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  0cc0 11009   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-2 12191
This theorem is referenced by:  cosnegpi  45868
  Copyright terms: Public domain W3C validator